Your browser doesn't support javascript.
loading
Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation.
Velimirovic, Milica; Schmid, Doris; Wagner, Stephan; Micic, Vesna; von der Kammer, Frank; Hofmann, Thilo.
Afiliação
  • Velimirovic M; Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
  • Schmid D; Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
  • Wagner S; Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
  • Micic V; Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
  • von der Kammer F; Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
  • Hofmann T; Department of Environmental Geosciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria. Electronic address: thilo.hofmann@univie.ac.at.
Sci Total Environ ; 563-564: 713-23, 2016 Sep 01.
Article em En | MEDLINE | ID: mdl-26596889
ABSTRACT
Submicron-scale milled zerovalent iron (milled ZVI) particles produced by grinding macroscopic raw materials could provide a cost-effective alternative to nanoscale zerovalent iron (nZVI) particles for in situ degradation of chlorinated aliphatic hydrocarbons in groundwater. However, the aggregation and settling of bare milled ZVI particles from suspension presents a significant obstacle to their in situ application for groundwater remediation. In our investigations we reduced the rapid aggregation and settling rate of bare milled ZVI particles from suspension by stabilization with a "green" agar agar polymer. The transport potential of stabilized milled ZVI particle suspensions in a diverse array of natural heterogeneous porous media was evaluated in a series of well-controlled laboratory column experiments. The impact of agar agar on trichloroethene (TCE) removal by milled ZVI particles was assessed in laboratory-scale batch reactors. The use of agar agar significantly enhanced the transport of milled ZVI particles in all of the investigated porous media. Reactivity tests showed that the agar agar-stabilized milled ZVI particles were reactive towards TCE, but that their reactivity was an order of magnitude less than that of bare, non-stabilized milled ZVI particles. Our results suggest that milled ZVI particles could be used as an alternative to nZVI particles as their potential for emplacement into contaminated zone, their reactivity, and expected longevity are beneficial for in situ groundwater remediation.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Total Environ Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Áustria

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Total Environ Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Áustria
...