Your browser doesn't support javascript.
loading
Spontaneous arsenic (III) oxidation with bioelectricity generation in single-chamber microbial fuel cells.
Li, Yunlong; Zhang, Baogang; Cheng, Ming; Li, Yalong; Hao, Liting; Guo, Huaming.
Afiliação
  • Li Y; School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China; Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing 100083, China.
  • Zhang B; School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China; Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing 100083, China. Electronic address: zbgcugb@gmail.com.
  • Cheng M; School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China; Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing 100083, China.
  • Li Y; School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China; Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing 100083, China.
  • Hao L; School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China; Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing 100083, China.
  • Guo H; School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China; Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing 100083, China.
J Hazard Mater ; 306: 8-12, 2016 Apr 05.
Article em En | MEDLINE | ID: mdl-26685120
ABSTRACT
Arsenic is one of the most toxic elements commonly found in groundwater. With initial concentration of 200µgL(-1), spontaneous As(III) oxidation is realized completely during 7 days operation in single-chamber microbial fuel cells (MFCs) in the present study, with the maximum power density of 752.6±17mWm(-2). The product is less toxic and mobile As(V), which can be removed from aqueous solution more easily. High-throughput 16S rRNA gene pyrosequencing analysis indicates the existence of arsenic-resistant bacteria as Actinobacteria, Comamonas, Pseudomonas and arsenic-oxidizing bacteria as Enterobacter, with electrochemically active bacteria as Lactococcus, Enterobacter. They interact together and are responsible for As(III) oxidation and bioelectricity generation in MFCs. This study offers a potential attractive method for remediation of arsenic-polluted groundwater.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arsênio / Poluentes Químicos da Água / Fontes de Energia Bioelétrica Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2016 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arsênio / Poluentes Químicos da Água / Fontes de Energia Bioelétrica Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2016 Tipo de documento: Article País de afiliação: China