Your browser doesn't support javascript.
loading
Dual temporal encoding mechanisms in human auditory cortex: Evidence from MEG and EEG.
Tang, Huizhen; Crain, Stephen; Johnson, Blake W.
Afiliação
  • Tang H; ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, NSW 2109, Australia; Department of Cognitive Science, Macquarie University, Sydney, NSW 2109, Australia. Electronic address: joann.tang@mq.edu.au.
  • Crain S; ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, NSW 2109, Australia; Department of Linguistics, Macquarie University, Sydney, NSW 2109, Australia.
  • Johnson BW; ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, NSW 2109, Australia; Department of Cognitive Science, Macquarie University, Sydney, NSW 2109, Australia.
Neuroimage ; 128: 32-43, 2016 Mar.
Article em En | MEDLINE | ID: mdl-26763154
ABSTRACT
Current hypotheses about language processing advocate an integral relationship between encoding of temporal information and linguistic processing in the brain. All such explanations must accommodate the evident ability of the perceptual system to process both slow and fast time scales in speech. However most cortical neurons are limited in their capability to precisely synchronise to temporal modulations at rates faster than about 50Hz. Hence, a central question in auditory neurophysiology concerns how the full range of perceptually relevant modulation rates might be encoded in the cerebral cortex. Here we show with concurrent noninvasive magnetoencephalography (MEG) and electroencephalography (EEG) measurements that the human auditory cortex transitions between a phase-locked (PL) mode of responding to modulation rates below about 50Hz, and a non-phase-locked (NPL) mode at higher rates. Precisely such dual response modes are predictable from the behaviours of single neurons in auditory cortices of non-human primates. Our data point to a common mechanistic explanation for the single neuron and MEG/EEG results and support the hypothesis that two distinct types of neuronal encoding mechanisms are employed by the auditory cortex to represent a wide range of temporal modulation rates. This dual encoding model allows slow and fast modulations in speech to be processed in parallel and is therefore consistent with theoretical frameworks in which slow temporal modulations (such as rhythm or syllabic structure) are akin to the contours or edges of visual objects, whereas faster modulations (such as periodicity pitch or phonemic structure) are more like visual texture.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Córtex Auditivo / Percepção Auditiva Tipo de estudo: Prognostic_studies Limite: Adult / Female / Humans / Male Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2016 Tipo de documento: Article País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Córtex Auditivo / Percepção Auditiva Tipo de estudo: Prognostic_studies Limite: Adult / Female / Humans / Male Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2016 Tipo de documento: Article País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA