Your browser doesn't support javascript.
loading
Unbiased Rare Event Sampling in Spatial Stochastic Systems Biology Models Using a Weighted Ensemble of Trajectories.
Donovan, Rory M; Tapia, Jose-Juan; Sullivan, Devin P; Faeder, James R; Murphy, Robert F; Dittrich, Markus; Zuckerman, Daniel M.
Afiliação
  • Donovan RM; Joint CMU-Pitt Ph.D. Program in Computational Biology, Pittsburgh, Pennsylvania, United States of America.
  • Tapia JJ; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.
  • Sullivan DP; Joint CMU-Pitt Ph.D. Program in Computational Biology, Pittsburgh, Pennsylvania, United States of America.
  • Faeder JR; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.
  • Murphy RF; Joint CMU-Pitt Ph.D. Program in Computational Biology, Pittsburgh, Pennsylvania, United States of America.
  • Dittrich M; Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.
  • Zuckerman DM; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.
PLoS Comput Biol ; 12(2): e1004611, 2016 Feb.
Article em En | MEDLINE | ID: mdl-26845334
ABSTRACT
The long-term goal of connecting scales in biological simulation can be facilitated by scale-agnostic methods. We demonstrate that the weighted ensemble (WE) strategy, initially developed for molecular simulations, applies effectively to spatially resolved cell-scale simulations. The WE approach runs an ensemble of parallel trajectories with assigned weights and uses a statistical resampling strategy of replicating and pruning trajectories to focus computational effort on difficult-to-sample regions. The method can also generate unbiased estimates of non-equilibrium and equilibrium observables, sometimes with significantly less aggregate computing time than would be possible using standard parallelization. Here, we use WE to orchestrate particle-based kinetic Monte Carlo simulations, which include spatial geometry (e.g., of organelles, plasma membrane) and biochemical interactions among mobile molecular species. We study a series of models exhibiting spatial, temporal and biochemical complexity and show that although WE has important limitations, it can achieve performance significantly exceeding standard parallel simulation--by orders of magnitude for some observables.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biologia de Sistemas / Modelos Biológicos Limite: Animals Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biologia de Sistemas / Modelos Biológicos Limite: Animals Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA