Your browser doesn't support javascript.
loading
Heme oxygenase-1 inhibits basophil maturation and activation but promotes its apoptosis in T helper type 2-mediated allergic airway inflammation.
Zhong, Wenwei; Di, Caixia; Lv, Jiajia; Zhang, Yanjie; Lin, Xiaoliang; Yuan, Yufan; Lv, Jie; Xia, Zhenwei.
Afiliação
  • Zhong W; Department of Paediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Di C; Department of Paediatrics, Shanghai Children's Medical Centre affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Lv J; Department of Paediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Zhang Y; Department of Paediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Lin X; Department of Paediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Yuan Y; Department of Paediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Lv J; Department of Paediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  • Xia Z; Department of Paediatrics, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Immunology ; 147(3): 321-37, 2016 Mar.
Article em En | MEDLINE | ID: mdl-26879758
ABSTRACT
The anti-inflammatory role of heme oxygenase-1 (HO-1) has been studied extensively in many disease models including asthma. Many cell types are anti-inflammatory targets of HO-1, such as dendritic cells and regulatory T cells. In contrast to previous reports that HO-1 had limited effects on basophils, which participate in T helper type 2 immune responses and antigen-induced allergic airway inflammation, we demonstrated in this study, for the first time, that the up-regulation of HO-1 significantly suppressed the maturation of mouse basophils, decreased the expression of CD40, CD80, MHC-II and activation marker CD200R on basophils, blocked DQ-ovalbumin uptake and promoted basophil apoptosis both in vitro and in vivo, leading to the inhibition of T helper type 2 polarization. These effects of HO-1 were mimicked by exogenous carbon monoxide, which is one of the catalytic products of HO-1. Furthermore, adoptive transfer of HO-1-modified basophils reduced ovalbumin-induced allergic airway inflammation. The above effects of HO-1 can be reversed by the HO-1 inhibitor Sn-protoporphyrin IX. Moreover, conditional depletion of basophils accompanying hemin treatment further attenuated airway inflammation compared with the hemin group, indicating that the protective role of HO-1 may involve multiple immune cells. Collectively, our findings demonstrated that HO-1 exerted its anti-inflammatory function through suppression of basophil maturation and activation, but promotion of basophil apoptosis, providing a possible novel therapeutic target in allergic asthma.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Asma / Basófilos / Apoptose / Células Th2 / Heme Oxigenase-1 / Hipersensibilidade / Proteínas de Membrana Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Immunology Ano de publicação: 2016 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Asma / Basófilos / Apoptose / Células Th2 / Heme Oxigenase-1 / Hipersensibilidade / Proteínas de Membrana Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Immunology Ano de publicação: 2016 Tipo de documento: Article País de afiliação: China