Your browser doesn't support javascript.
loading
Metagenomic Analyses of the Autotrophic Fe(II)-Oxidizing, Nitrate-Reducing Enrichment Culture KS.
He, Shaomei; Tominski, Claudia; Kappler, Andreas; Behrens, Sebastian; Roden, Eric E.
Afiliação
  • He S; Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, USA she@wisc.edu eroden@geology.wisc.edu.
  • Tominski C; Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  • Kappler A; NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.
  • Behrens S; Geomicrobiology, Center for Applied Geosciences (ZAG), Eberhard Karls University Tuebingen, Tuebingen, Germany.
  • Roden EE; Geomicrobiology, Center for Applied Geosciences (ZAG), Eberhard Karls University Tuebingen, Tuebingen, Germany.
Appl Environ Microbiol ; 82(9): 2656-2668, 2016 May.
Article em En | MEDLINE | ID: mdl-26896135
Nitrate-dependent ferrous iron [Fe(II)] oxidation (NDFO) is a well-recognized chemolithotrophic pathway in anoxic sediments. The neutrophilic chemolithoautotrophic enrichment culture KS originally obtained from a freshwater sediment (K. L. Straub, M. Benz, B. Schink, and F. Widdel, Appl Environ Microbiol 62:1458-1460, 1996) has been used as a model system to study NDFO. However, the primary Fe(II) oxidizer in this culture has not been isolated, despite extensive efforts to do so. Here, we present a metagenomic analysis of this enrichment culture in order to gain insight into electron transfer pathways and the roles of different bacteria in the culture. We obtained a near-complete genome of the primary Fe(II) oxidizer, a species in the family Gallionellaceae, and draft genomes from its flanking community members. A search of the putative extracellular electron transfer pathways in these genomes led to the identification of a homolog of the MtoAB complex [a porin-multiheme cytochromec system identified in neutrophilic microaerobic Fe(II)-oxidizing Sideroxydans lithotrophicus ES-1] in a Gallionellaceae sp., and findings of other putative genes involving cytochromecand multicopper oxidases, such as Cyc2 and OmpB. Genome-enabled metabolic reconstruction revealed that this Gallionellaceae sp. lacks nitric oxide and nitrous oxide reductase genes and may partner with flanking populations capable of complete denitrification to avoid toxic metabolite accumulation, which may explain its resistance to growth in pure culture. This and other revealed interspecies interactions and metabolic interdependencies in nitrogen and carbon metabolisms may allow these organisms to cooperate effectively to achieve robust chemolithoautotrophic NDFO. Overall, the results significantly expand our knowledge of NDFO and suggest a range of genetic targets for further exploration.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Compostos Ferrosos / Gallionellaceae / Nitratos Tipo de estudo: Prognostic_studies Idioma: En Revista: Appl Environ Microbiol Ano de publicação: 2016 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Compostos Ferrosos / Gallionellaceae / Nitratos Tipo de estudo: Prognostic_studies Idioma: En Revista: Appl Environ Microbiol Ano de publicação: 2016 Tipo de documento: Article País de publicação: Estados Unidos