Your browser doesn't support javascript.
loading
Development of a fully integrated falling film microreactor for gas-liquid-solid biotransformation with surface immobilized O2 -dependent enzyme.
Bolivar, Juan M; Krämer, Christina E M; Ungerböck, Birgit; Mayr, Torsten; Nidetzky, Bernd.
Afiliação
  • Bolivar JM; Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, A-8010, Austria.
  • Krämer CE; Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, A-8010, Austria.
  • Ungerböck B; Institute of Analytical and Food Chemistry, Graz University of Technology, Graz, Austria.
  • Mayr T; Institute of Analytical and Food Chemistry, Graz University of Technology, Graz, Austria.
  • Nidetzky B; Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, A-8010, Austria. bernd.nidetzky@tugraz.at.
Biotechnol Bioeng ; 113(9): 1862-72, 2016 09.
Article em En | MEDLINE | ID: mdl-26927978
ABSTRACT
Microstructured flow reactors are powerful tools for the development of multiphase biocatalytic transformations. To expand their current application also to O2 -dependent enzymatic conversions, we have implemented a fully integrated falling film microreactor that provides controllable countercurrent gas-liquid phase contacting in a multi-channel microstructured reaction plate. Advanced non-invasive optical sensing is applied to measure liquid-phase oxygen concentrations in both in- and out-flow as well as directly in the microchannels (width 600 µm; depth 200 µm). Protein-surface interactions are designed for direct immobilization of catalyst on microchannel walls. Target enzyme (here d-amino acid oxidase) is fused to the positively charged mini-protein Zbasic2 and the channel surface contains a negatively charged γ-Al2 O3 wash-coat layer. Non-covalent wall attachment of the chimeric Zbasic2 _oxidase resulted in fully reversible enzyme immobilization with fairly uniform surface coverage and near complete retention of biological activity. The falling film at different gas and liquid flow rates as well as reactor inclination angles was shown to be mostly wavy laminar. The calculated film thickness was in the range 0.5-1.3 × 10(-4) m. Direct O2 concentration measurements at the channel surface demonstrated that the liquid side mass transfer coefficient (KL ) for O2 governed the overall gas/liquid/solid mass transfer and that the O2 transfer rate (≥0.75 mM · s(-1) ) vastly exceeded the maximum enzymatic reaction rate in a wide range of conditions. A value of 7.5 (±0.5) s(-1) was determined for the overall mass transfer coefficient KL a, comprising a KL of about 7 × 10(-5) m · s(-1) and a specific surface area of up to 10(5) m(-1) . Biotechnol. Bioeng. 2016;113 1862-1872. © 2016 Wiley Periodicals, Inc.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxirredutases / Reatores Biológicos / Enzimas Imobilizadas Idioma: En Revista: Biotechnol Bioeng Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Áustria

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxirredutases / Reatores Biológicos / Enzimas Imobilizadas Idioma: En Revista: Biotechnol Bioeng Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Áustria
...