Your browser doesn't support javascript.
loading
Maximum-Entropy Inference with a Programmable Annealer.
Chancellor, Nicholas; Szoke, Szilard; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A.
Afiliação
  • Chancellor N; London Centre For Nanotechnology 19 Gordon St, London, WC1H 0AH, UK.
  • Szoke S; Department of Electronic and Electrical Engineering, UCL, Torrington Place, London, WC1E 7JE, UK.
  • Vinci W; University of Southern California Department of Electrical Engineering 825 Bloom, Walk Los Angeles CA, 90089, USA.
  • Aeppli G; University of Southern California Center for Quantum Information Science Technology 825 Bloom Walk, Los Angeles CA, 90089, USA.
  • Warburton PA; Department of Physics, ETH Zürich, Zürich, CH-8093, Switzerland.
Sci Rep ; 6: 22318, 2016 Mar 03.
Article em En | MEDLINE | ID: mdl-26936311
Optimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this maximises the likelihood that the solution is correct. The maximum entropy solution on the other hand takes the form of a Boltzmann distribution over the ground and excited states of the cost function to correct for noise. Here we use a programmable annealer for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that finite temperature maximum entropy decoding can give slightly better bit-error-rates than the maximum likelihood approach, confirming that useful information can be extracted from the excited states of the annealer. Furthermore we introduce a bit-by-bit analytical method which is agnostic to the specific application and use it to show that the annealer samples from a highly Boltzmann-like distribution. Machines of this kind are therefore candidates for use in a variety of machine learning applications which exploit maximum entropy inference, including language processing and image recognition.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Teóricos Tipo de estudo: Prognostic_studies Idioma: En Revista: Sci Rep Ano de publicação: 2016 Tipo de documento: Article País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Teóricos Tipo de estudo: Prognostic_studies Idioma: En Revista: Sci Rep Ano de publicação: 2016 Tipo de documento: Article País de publicação: Reino Unido