Your browser doesn't support javascript.
loading
Indirect three-dimensional printing: A method for fabricating polyurethane-urea based cardiac scaffolds.
Hernández-Córdova, R; Mathew, D A; Balint, R; Carrillo-Escalante, H J; Cervantes-Uc, J M; Hidalgo-Bastida, L A; Hernández-Sánchez, F.
Afiliação
  • Hernández-Córdova R; Centro de Investigación Científica de Yucatán, A.C., Mérida, Yucatán, México.
  • Mathew DA; School of Healthcare Sciences, Manchester Metropolitan University, Manchester, United Kingdom.
  • Balint R; School of Materials, University of Manchester, Manchester, United Kingdom.
  • Carrillo-Escalante HJ; Centro de Investigación Científica de Yucatán, A.C., Mérida, Yucatán, México.
  • Cervantes-Uc JM; Centro de Investigación Científica de Yucatán, A.C., Mérida, Yucatán, México.
  • Hidalgo-Bastida LA; School of Healthcare Sciences, Manchester Metropolitan University, Manchester, United Kingdom.
  • Hernández-Sánchez F; Centro de Investigación Científica de Yucatán, A.C., Mérida, Yucatán, México.
J Biomed Mater Res A ; 104(8): 1912-21, 2016 08.
Article em En | MEDLINE | ID: mdl-26991636
Biomaterial scaffolds are a key part of cardiac tissue engineering therapies. The group has recently synthesized a novel polycaprolactone based polyurethane-urea copolymer that showed improved mechanical properties compared with its previously published counterparts. The aim of this study was to explore whether indirect three-dimensional (3D) printing could provide a means to fabricate this novel, biodegradable polymer into a scaffold suitable for cardiac tissue engineering. Indirect 3D printing was carried out through printing water dissolvable poly(vinyl alcohol) porogens in three different sizes based on a wood-stack model, into which a polyurethane-urea solution was pressure injected. The porogens were removed, leading to soft polyurethane-urea scaffolds with regular tubular pores. The scaffolds were characterized for their compressive and tensile mechanical behavior; and their degradation was monitored for 12 months under simulated physiological conditions. Their compatibility with cardiac myocytes and performance in novel cardiac engineering-related techniques, such as aggregate seeding and bi-directional perfusion, was also assessed. The scaffolds were found to have mechanical properties similar to cardiac tissue, and good biocompatibility with cardiac myocytes. Furthermore, the incorporated cells preserved their phenotype with no signs of de-differentiation. The constructs worked well in perfusion experiments, showing enhanced seeding efficiency. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1912-1921, 2016.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poliuretanos / Alicerces Teciduais / Impressão Tridimensional / Coração Limite: Humans Idioma: En Revista: J Biomed Mater Res A Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2016 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poliuretanos / Alicerces Teciduais / Impressão Tridimensional / Coração Limite: Humans Idioma: En Revista: J Biomed Mater Res A Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2016 Tipo de documento: Article País de publicação: Estados Unidos