Your browser doesn't support javascript.
loading
Brain-heart interactions: physiology and clinical implications.
Silvani, Alessandro; Calandra-Buonaura, Giovanna; Dampney, Roger A L; Cortelli, Pietro.
Afiliação
  • Silvani A; PRISM Lab, University of Bologna, Bologna, Italy.
  • Calandra-Buonaura G; Autonomic Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy IRCCS, Institute of Neurological Sciences of Bologna, Bellaria University Hospital, Block G, Via Altura 3, 40139 Bologna, Italy.
  • Dampney RA; School of Medical Sciences (Physiology) and Bosch Institute for Biomedical Research, University of Sydney, Sidney, New South Wales, Australia.
  • Cortelli P; Autonomic Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy IRCCS, Institute of Neurological Sciences of Bologna, Bellaria University Hospital, Block G, Via Altura 3, 40139 Bologna, Italy pietro.cortelli@unibo.it.
Philos Trans A Math Phys Eng Sci ; 374(2067)2016 May 13.
Article em En | MEDLINE | ID: mdl-27044998
ABSTRACT
The brain controls the heart directly through the sympathetic and parasympathetic branches of the autonomic nervous system, which consists of multi-synaptic pathways from myocardial cells back to peripheral ganglionic neurons and further to central preganglionic and premotor neurons. Cardiac function can be profoundly altered by the reflex activation of cardiac autonomic nerves in response to inputs from baro-, chemo-, nasopharyngeal and other receptors as well as by central autonomic commands, including those associated with stress, physical activity, arousal and sleep. In the clinical setting, slowly progressive autonomic failure frequently results from neurodegenerative disorders, whereas autonomic hyperactivity may result from vascular, inflammatory or traumatic lesions of the autonomic nervous system, adverse effects of drugs and chronic neurological disorders. Both acute and chronic manifestations of an imbalanced brain-heart interaction have a negative impact on health. Simple, widely available and reliable cardiovascular markers of the sympathetic tone and of the sympathetic-parasympathetic balance are lacking. A deeper understanding of the connections between autonomic cardiac control and brain dynamics through advanced signal and neuroimage processing may lead to invaluable tools for the early detection and treatment of pathological changes in the brain-heart interaction.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo Tipo de estudo: Screening_studies Idioma: En Revista: Philos Trans A Math Phys Eng Sci Assunto da revista: BIOFISICA / ENGENHARIA BIOMEDICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo Tipo de estudo: Screening_studies Idioma: En Revista: Philos Trans A Math Phys Eng Sci Assunto da revista: BIOFISICA / ENGENHARIA BIOMEDICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Itália