Your browser doesn't support javascript.
loading
Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells.
Forostyak, Oksana; Butenko, Olena; Anderova, Miroslava; Forostyak, Serhiy; Sykova, Eva; Verkhratsky, Alexei; Dayanithi, Govindan.
Afiliação
  • Forostyak O; Department of Molecular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic; Department of Neuroscience, Charles University, Second Faculty of Medicine, V Uvalu 84, Prague 15006, Czech Republic.
  • Butenko O; Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic. Electronic address: olena.butenko@unito.it.
  • Anderova M; Department of Neuroscience, Charles University, Second Faculty of Medicine, V Uvalu 84, Prague 15006, Czech Republic; Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.
  • Forostyak S; Department of Neuroscience, Charles University, Second Faculty of Medicine, V Uvalu 84, Prague 15006, Czech Republic; Department of Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.
  • Sykova E; Department of Neuroscience, Charles University, Second Faculty of Medicine, V Uvalu 84, Prague 15006, Czech Republic; Department of Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.
  • Verkhratsky A; University of Manchester, School of Biological Sciences, D.4417 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia.
  • Dayanithi G; Department of Molecular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic; Institut National de la Santé et de la Recherche Médicale-U1198, Université Montpellier, Montpellier 34095, France; Ecole Pratique des Hautes Etudes-So
Stem Cell Res ; 16(3): 622-34, 2016 05.
Article em En | MEDLINE | ID: mdl-27062357
ABSTRACT
Adherent, fibroblastic cells from different tissues are thought to contain subsets of tissue-specific stem/progenitor cells (often called mesenchymal stem cells). These cells display similar cell surface characteristics based on their fibroblastic nature, but also exhibit differences in molecular phenotype, growth rate, and their ability to differentiate into various cell phenotypes. The mechanisms underlying these differences remain poorly understood. We analyzed Ca(2+) signals and membrane properties in rat adipose-derived stromal cells (ADSCs) and bone marrow stromal cells (BMSCs) in basal conditions, and then following a switch into medium that contains factors known to modify their character. Modified ADSCs (mADSCs) expressed L-type Ca(2+) channels whereas both L- and P/Q- channels were operational in mBMSCs. Both mADSCs and mBMSCs possessed functional endoplasmic reticulum Ca(2+) stores, expressed ryanodine receptor-1 and -3, and exhibited spontaneous [Ca(2+)]i oscillations. The mBMSCs expressed P2X7 purinoceptors; the mADSCs expressed both P2X (but not P2X7) and P2Y (but not P2Y1) receptors. Both types of stromal cells exhibited [Ca(2+)]i responses to vasopressin (AVP) and expressed V1 type receptors. Functional oxytocin (OT) receptors were, in contrast, expressed only in modified ADSCs and BMSCs. AVP and OT-induced [Ca(2+)]i responses were dose-dependent and were blocked by their respective specific receptor antagonists. Electrophysiological data revealed that passive ion currents dominated the membrane conductance in ADSCs and BMSCs. Medium modification led to a significant shift in the reversal potential of passive currents from -40 to -50mV in cells in basal to -80mV in modified cells. Hence membrane conductance was mediated by non-selective channels in cells in basal conditions, whereas in modified medium conditions, it was associated with K(+)-selective channels. Our results indicate that modification of ADSCs and BMSCs by alteration in medium formulation is associated with significant changes in their Ca(2+) signaling and membrane properties.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Células da Medula Óssea / Tecido Adiposo / Células Estromais / Canais Iônicos Limite: Animals Idioma: En Revista: Stem Cell Res Ano de publicação: 2016 Tipo de documento: Article País de afiliação: República Tcheca

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Células da Medula Óssea / Tecido Adiposo / Células Estromais / Canais Iônicos Limite: Animals Idioma: En Revista: Stem Cell Res Ano de publicação: 2016 Tipo de documento: Article País de afiliação: República Tcheca