Your browser doesn't support javascript.
loading
Picosecond infrared laser-induced all-atom nonequilibrium molecular dynamics simulation of dissociation of viruses.
Hoang Man, Viet; Van-Oanh, Nguyen-Thi; Derreumaux, Philippe; Li, Mai Suan; Roland, Christopher; Sagui, Celeste; Nguyen, Phuong H.
Afiliação
  • Hoang Man V; Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA. vhman@ncsu.edu.
  • Van-Oanh NT; Laboratoire de Chimie Physique, Université Paris-Sud XI, F91405 Orsay Cedex, France.
  • Derreumaux P; Laboratoire de Biochimie Theorique, UPR 9080 CNRS, IBPC, Universite Denis Diderot, Paris Sorbonne Cité 13 rue Pierre et Marie Curie, 75005, Paris, France.
  • Li MS; Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland and Institute for Computational Science and Technology, SBI building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam.
  • Roland C; Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA. vhman@ncsu.edu.
  • Sagui C; Department of Physics, North Carolina State University, Raleigh, NC 27695-8202, USA. vhman@ncsu.edu.
  • Nguyen PH; Laboratoire de Biochimie Theorique, UPR 9080 CNRS, IBPC, Universite Paris 7, 13 rue Pierre et Marie Curie, 75005, Paris, France. nguyen@ibpc.fr.
Phys Chem Chem Phys ; 18(17): 11951-8, 2016 04 28.
Article em En | MEDLINE | ID: mdl-27071540
Since the discovery of the plant pathogen tobacco mosaic virus as the first viral entity in the late 1800s, viruses traditionally have been mainly thought of as pathogens for disease-resistances. However, viruses have recently been exploited as nanoplatforms with applications in biomedicine and materials science. To this aim, a large majority of current methods and tools have been developed to improve the physical stability of viral particles, which may be critical to the extreme physical or chemical conditions that viruses may encounter during purification, fabrication processes, storage and use. However, considerably fewer studies are devoted to developing efficient methods to degrade or recycle such enhanced stability biomaterials. With this in mind, we carry out all-atom nonequilibrium molecular dynamics simulation, inspired by the recently developed mid-infrared free-electron laser pulse technology, to dissociate viruses. Adopting the poliovirus as a representative example, we find that the primary step in the dissociation process is due to the strong resonance between the amide I vibrational modes of the virus and the tuned laser frequencies. This process is determined by a balance between the formation and dissociation of the protein shell, reflecting the highly plasticity of the virus. Furthermore, our method should provide a feasible approach to simulate viruses, which is otherwise too expensive for conventional equilibrium all-atom simulations of such very large systems. Our work shows a proof of concept which may open a new, efficient way to cleave or to recycle virus-based materials, provide an extremely valuable tool for elucidating mechanical aspects of viruses, and may well play an important role in future fighting against virus-related diseases.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vírion / Materiais Biocompatíveis / Poliovirus Limite: Humans Idioma: En Revista: Phys Chem Chem Phys Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vírion / Materiais Biocompatíveis / Poliovirus Limite: Humans Idioma: En Revista: Phys Chem Chem Phys Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido