Your browser doesn't support javascript.
loading
Re-epithelialization of cutaneous wounds in adult zebrafish combines mechanisms of wound closure in embryonic and adult mammals.
Richardson, Rebecca; Metzger, Manuel; Knyphausen, Philipp; Ramezani, Thomas; Slanchev, Krasimir; Kraus, Christopher; Schmelzer, Elmon; Hammerschmidt, Matthias.
Afiliação
  • Richardson R; Institute of Developmental Biology, University of Cologne, Cologne D-50674, Germany rebecca.richardson@bristol.ac.uk mhammers@uni-koeln.de.
  • Metzger M; Institute of Developmental Biology, University of Cologne, Cologne D-50674, Germany.
  • Knyphausen P; Institute of Developmental Biology, University of Cologne, Cologne D-50674, Germany Graduate School for Biological Sciences, University of Cologne, Cologne D-50674, Germany.
  • Ramezani T; Institute of Developmental Biology, University of Cologne, Cologne D-50674, Germany.
  • Slanchev K; Georges-Koehler Laboratory, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg D-79108, Germany.
  • Kraus C; Institute of Developmental Biology, University of Cologne, Cologne D-50674, Germany.
  • Schmelzer E; Cell Biology, Max-Planck Institute for Plant Breeding Research, Cologne D-50829, Germany.
  • Hammerschmidt M; Institute of Developmental Biology, University of Cologne, Cologne D-50674, Germany Center for Molecular Medicine Cologne, University of Cologne, Cologne D-50931, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne D-50931, Ger
Development ; 143(12): 2077-88, 2016 06 15.
Article em En | MEDLINE | ID: mdl-27122176
ABSTRACT
Re-epithelialization of cutaneous wounds in adult mammals takes days to complete and relies on numerous signalling cues and multiple overlapping cellular processes that take place both within the epidermis and in other participating tissues. Re-epithelialization of partial- or full-thickness skin wounds of adult zebrafish, however, is extremely rapid and largely independent of the other processes of wound healing. Live imaging after treatment with transgene-encoded or chemical inhibitors reveals that re-epithelializing keratinocytes repopulate wounds by TGF-ß- and integrin-dependent lamellipodial crawling at the leading edges of the epidermal tongue. In addition, re-epithelialization requires long-range epithelial rearrangements, involving radial intercalations, flattening and directed elongation of cells - processes that are dependent on Rho kinase, JNK and, to some extent, planar cell polarity within the epidermis. These rearrangements lead to a massive recruitment of keratinocytes from the adjacent epidermis and make re-epithelialization independent of keratinocyte proliferation and the mitogenic effect of FGF signalling, which are only required after wound closure, allowing the epidermis outside the wound to re-establish its normal thickness. Together, these results demonstrate that the adult zebrafish is a valuable in vivo model for studying and visualizing the processes involved in cutaneous wound closure, facilitating the dissection of direct from indirect and motogenic from mitogenic effects of genes and molecules affecting wound re-epithelialization.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pele / Peixe-Zebra / Envelhecimento / Embrião de Mamíferos / Reepitelização / Mamíferos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Development Assunto da revista: BIOLOGIA / EMBRIOLOGIA Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pele / Peixe-Zebra / Envelhecimento / Embrião de Mamíferos / Reepitelização / Mamíferos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Development Assunto da revista: BIOLOGIA / EMBRIOLOGIA Ano de publicação: 2016 Tipo de documento: Article