Your browser doesn't support javascript.
loading
Automated image analysis for quantification of reactive oxygen species in plant leaves.
Sekulska-Nalewajko, Joanna; Goclawski, Jaroslaw; Chojak-Kozniewska, Joanna; Kuzniak, Elzbieta.
Afiliação
  • Sekulska-Nalewajko J; Institute of Applied Computer Science, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Lodz, Poland. Electronic address: jsekulska@kis.p.lodz.pl.
  • Goclawski J; Institute of Applied Computer Science, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Lodz, Poland. Electronic address: jgoclaw@kis.p.lodz.pl.
  • Chojak-Kozniewska J; Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland. Electronic address: jchojak@biol.uni.lodz.pl.
  • Kuzniak E; Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland. Electronic address: elkuz@biol.uni.lodz.pl.
Methods ; 109: 114-122, 2016 10 15.
Article em En | MEDLINE | ID: mdl-27245398
The paper presents an image processing method for the quantitative assessment of ROS accumulation areas in leaves stained with DAB or NBT for H2O2 and O2- detection, respectively. Three types of images determined by the combination of staining method and background color are considered. The method is based on the principle of supervised machine learning with manually labeled image patterns used for training. The method's algorithm is developed as a JavaScript macro in the public domain Fiji (ImageJ) environment. It allows to select the stained regions of ROS-mediated histochemical reactions, subsequently fractionated according to the weak, medium and intense staining intensity and thus ROS accumulation. It also evaluates total leaf blade area. The precision of ROS accumulation area detection is validated by the Dice Similarity Coefficient in the case of manual patterns. The proposed framework reduces the computation complexity, once prepared, requires less image processing expertise than the competitive methods and represents a routine quantitative imaging assay for a general histochemical image classification.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Espécies Reativas de Oxigênio / Imagem Molecular / Peróxido de Hidrogênio Idioma: En Revista: Methods Assunto da revista: BIOQUIMICA Ano de publicação: 2016 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Espécies Reativas de Oxigênio / Imagem Molecular / Peróxido de Hidrogênio Idioma: En Revista: Methods Assunto da revista: BIOQUIMICA Ano de publicação: 2016 Tipo de documento: Article País de publicação: Estados Unidos