Your browser doesn't support javascript.
loading
Two pairs of farnesyl phenolic enantiomers as natural nitric oxide inhibitors from Ganoderma sinense.
Wang, Meng; Wang, Fei; Xu, Feng; Ding, Li-Qin; Zhang, Qian; Li, Hui-Xiang; Zhao, Feng; Wang, Li-Qing; Zhu, Li-Han; Chen, Li-Xia; Qiu, Feng.
Afiliação
  • Wang M; Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
  • Wang F; Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
  • Xu F; Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
  • Ding LQ; School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, People's Republic of China.
  • Zhang Q; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China.
  • Li HX; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China.
  • Zhao F; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China.
  • Wang LQ; Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
  • Zhu LH; Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
  • Chen LX; Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China. Electronic address: syzyclx@163.com.
  • Qiu F; Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Chinese Materia Medica and Tianjin
Bioorg Med Chem Lett ; 26(14): 3342-3345, 2016 07 15.
Article em En | MEDLINE | ID: mdl-27256914
ABSTRACT
Four new farnesyl phenolic compounds, ganosinensols A-D (1-4) were isolated from the 95% EtOH extract of the fruiting bodies of Ganoderma sinense. Two pairs of enantiomers, 1/2, and 3/4 were isolated by HPLC using a Daicel Chiralpak IE column. Their structures were elucidated from extensive spectroscopic analyses and comparison with literature data. The absolute configurations of 1-4 were assigned by ECD spectra. All of these isolated compounds showed potent inhibitory activity against LPS-induced nitric oxide production in RAW 264.7 macrophages, with IC50 values from 1.15 to 2.26µM.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenóis / Ganoderma / Óxido Nítrico Limite: Animals Idioma: En Revista: Bioorg Med Chem Lett Assunto da revista: BIOQUIMICA / QUIMICA Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenóis / Ganoderma / Óxido Nítrico Limite: Animals Idioma: En Revista: Bioorg Med Chem Lett Assunto da revista: BIOQUIMICA / QUIMICA Ano de publicação: 2016 Tipo de documento: Article
...