Your browser doesn't support javascript.
loading
Studies on the formation of polymeric nano-emulsions obtained via low-energy emulsification and their use as templates for drug delivery nanoparticle dispersions.
Calderó, G; Montes, R; Llinàs, M; García-Celma, M J; Porras, M; Solans, C.
Afiliação
  • Calderó G; Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) and CIBER de Bioingeniería, Biomateriales y Nanomedicina (BBN), Jordi Girona, 18-26, 08034 Barcelona, Spain. Electronic address: gabriela.caldero@gmail.com.
  • Montes R; Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) and CIBER de Bioingeniería, Biomateriales y Nanomedicina (BBN), Jordi Girona, 18-26, 08034 Barcelona, Spain.
  • Llinàs M; Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) and CIBER de Bioingeniería, Biomateriales y Nanomedicina (BBN), Jordi Girona, 18-26, 08034 Barcelona, Spain.
  • García-Celma MJ; Departament de Farmàcia i Tecnologia Farmacèutica, Univ. de Barcelona, Unitat Associada d'I +D al CSIC- Av Joan XXIII, s/n, 08028 Barcelona, Spain.
  • Porras M; Departament d'Enginyeria Química, Univ. de Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain.
  • Solans C; Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) and CIBER de Bioingeniería, Biomateriales y Nanomedicina (BBN), Jordi Girona, 18-26, 08034 Barcelona, Spain.
Colloids Surf B Biointerfaces ; 145: 922-931, 2016 Sep 01.
Article em En | MEDLINE | ID: mdl-27341306
Ethylcellulose nanoparticles have been obtained from O/W nano-emulsions of the water/polyoxyethylene 10 oleyl ether/[ethyl acetate+4wt% ethylcellulose] system by low energy-energy emulsification at 25°C. Nano-emulsions with droplet sizes below 200nm and high kinetic stability were chosen for solubilising dexamethasone (DXM). Phase behaviour, conductivity and optical analysis studies of the system have evidenced for the first time that both, the polymer and the drug play a role on the structure of the aggregates formed along the emulsification path. Nano-emulsion formation may take place by both, phase inversion and self-emulsification. Spherical polymeric nanoparticles containing surfactant, showing sizes below 160nm have been obtained from the nano-emulsions by organic solvent evaporation. DXM loading in the nanoparticles was high (>90%). The release kinetics of nanoparticle dispersions with similar particle size and encapsulated DXM but different polymer to surfactant ratio were studied and compared to an aqueous DXM solution. Drug release from the nanoparticle dispersions was slower than from the aqueous solution. While the DXM solution showed a Fickian release pattern, the release behaviour from the nanoparticle dispersions was faster than that expected from a pure Fickian release. A coupled diffusion/relaxation model fitted the results very well, suggesting that polymer chains undergo conformational changes enhancing drug release. The contribution of diffusion and relaxation to drug transport in the nanoparticle dispersions depended on their composition and release time. Surfactant micelles present in the nanoparticle dispersion may exert a mild reservoir effect. The small particle size and the prolonged DXM release provided by the ethylcellulose nanoparticle dispersions make them suitable vehicles for controlled drug delivery applications.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Nanopartículas Idioma: En Revista: Colloids Surf B Biointerfaces Assunto da revista: QUIMICA Ano de publicação: 2016 Tipo de documento: Article País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Nanopartículas Idioma: En Revista: Colloids Surf B Biointerfaces Assunto da revista: QUIMICA Ano de publicação: 2016 Tipo de documento: Article País de publicação: Holanda