Your browser doesn't support javascript.
loading
De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data.
Grün, Dominic; Muraro, Mauro J; Boisset, Jean-Charles; Wiebrands, Kay; Lyubimova, Anna; Dharmadhikari, Gitanjali; van den Born, Maaike; van Es, Johan; Jansen, Erik; Clevers, Hans; de Koning, Eelco J P; van Oudenaarden, Alexander.
Afiliação
  • Grün D; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, the Netherlands; Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany. Electronic address:
  • Muraro MJ; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, the Netherlands; Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.
  • Boisset JC; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, the Netherlands; Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.
  • Wiebrands K; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, the Netherlands; Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.
  • Lyubimova A; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, the Netherlands; Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.
  • Dharmadhikari G; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, the Netherlands; Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; Department of Medicine, Section of Nephrology and Section of Endocrinology, Leiden University Medica
  • van den Born M; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, the Netherlands; Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.
  • van Es J; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, the Netherlands; Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.
  • Jansen E; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, the Netherlands; Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands.
  • Clevers H; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, the Netherlands; Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; Princess Maxima Center for Pediatric Oncology, 3508 AB Utrecht, the Netherlands.
  • de Koning EJP; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, the Netherlands; Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands; Department of Medicine, Section of Nephrology and Section of Endocrinology, Leiden University Medica
  • van Oudenaarden A; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, the Netherlands; Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands. Electronic address: a.vanoudenaarden@hubrecht.eu.
Cell Stem Cell ; 19(2): 266-277, 2016 08 04.
Article em En | MEDLINE | ID: mdl-27345837
Adult mitotic tissues like the intestine, skin, and blood undergo constant turnover throughout the life of an organism. Knowing the identity of the stem cell is crucial to understanding tissue homeostasis and its aberrations upon disease. Here we present a computational method for the derivation of a lineage tree from single-cell transcriptome data. By exploiting the tree topology and the transcriptome composition, we establish StemID, an algorithm for identifying stem cells among all detectable cell types within a population. We demonstrate that StemID recovers two known adult stem cell populations, Lgr5+ cells in the small intestine and hematopoietic stem cells in the bone marrow. We apply StemID to predict candidate multipotent cell populations in the human pancreas, a tissue with largely uncharacterized turnover dynamics. We hope that StemID will accelerate the search for novel stem cells by providing concrete markers for biological follow-up and validation.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Células-Tronco / Análise de Célula Única / Transcriptoma Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Adult / Animals / Humans Idioma: En Revista: Cell Stem Cell Ano de publicação: 2016 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Células-Tronco / Análise de Célula Única / Transcriptoma Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Adult / Animals / Humans Idioma: En Revista: Cell Stem Cell Ano de publicação: 2016 Tipo de documento: Article País de publicação: Estados Unidos