Bayesian variable selection and estimation in semiparametric joint models of multivariate longitudinal and survival data.
Biom J
; 59(1): 57-78, 2017 Jan.
Article
em En
| MEDLINE
| ID: mdl-27667731
This paper presents a novel semiparametric joint model for multivariate longitudinal and survival data (SJMLS) by relaxing the normality assumption of the longitudinal outcomes, leaving the baseline hazard functions unspecified and allowing the history of the longitudinal response having an effect on the risk of dropout. Using Bayesian penalized splines to approximate the unspecified baseline hazard function and combining the Gibbs sampler and the Metropolis-Hastings algorithm, we propose a Bayesian Lasso (BLasso) method to simultaneously estimate unknown parameters and select important covariates in SJMLS. Simulation studies are conducted to investigate the finite sample performance of the proposed techniques. An example from the International Breast Cancer Study Group (IBCSG) is used to illustrate the proposed methodologies.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Modelos Estatísticos
/
Biometria
Tipo de estudo:
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Revista:
Biom J
Ano de publicação:
2017
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Alemanha