Your browser doesn't support javascript.
loading
Bayesian variable selection and estimation in semiparametric joint models of multivariate longitudinal and survival data.
Tang, An-Min; Zhao, Xingqiu; Tang, Nian-Sheng.
Afiliação
  • Tang AM; Department of Statistics, Yunnan University, Kunming, 650091, China.
  • Zhao X; Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong.
  • Tang NS; Shenzhen Research Institute, Hong Kong Polytechnic University, Shenzhen 518057, China.
Biom J ; 59(1): 57-78, 2017 Jan.
Article em En | MEDLINE | ID: mdl-27667731
This paper presents a novel semiparametric joint model for multivariate longitudinal and survival data (SJMLS) by relaxing the normality assumption of the longitudinal outcomes, leaving the baseline hazard functions unspecified and allowing the history of the longitudinal response having an effect on the risk of dropout. Using Bayesian penalized splines to approximate the unspecified baseline hazard function and combining the Gibbs sampler and the Metropolis-Hastings algorithm, we propose a Bayesian Lasso (BLasso) method to simultaneously estimate unknown parameters and select important covariates in SJMLS. Simulation studies are conducted to investigate the finite sample performance of the proposed techniques. An example from the International Breast Cancer Study Group (IBCSG) is used to illustrate the proposed methodologies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Modelos Estatísticos / Biometria Tipo de estudo: Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Biom J Ano de publicação: 2017 Tipo de documento: Article País de afiliação: China País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Modelos Estatísticos / Biometria Tipo de estudo: Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Biom J Ano de publicação: 2017 Tipo de documento: Article País de afiliação: China País de publicação: Alemanha