Your browser doesn't support javascript.
loading
Gadd45a is a heterochromatin relaxer that enhances iPS cell generation.
Chen, Keshi; Long, Qi; Wang, Tao; Zhao, Danyun; Zhou, Yanshuang; Qi, Juntao; Wu, Yi; Li, Shengbiao; Chen, Chunlan; Zeng, Xiaoming; Yang, Jianguo; Zhou, Zisong; Qin, Weiwen; Liu, Xiyin; Li, Yuxing; Li, Yingying; Huang, Xiaofen; Qin, Dajiang; Chen, Jiekai; Pan, Guangjin; Schöler, Hans R; Xu, Guoliang; Liu, Xingguo; Pei, Duanqing.
Afiliação
  • Chen K; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
  • Long Q; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
  • Wang T; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
  • Zhao D; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
  • Zhou Y; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
  • Qi J; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
  • Wu Y; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
  • Li S; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
  • Chen C; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
  • Zeng X; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
  • Yang J; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
  • Zhou Z; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
  • Qin W; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
  • Liu X; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
  • Li Y; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
  • Li Y; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
  • Huang X; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
  • Qin D; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
  • Chen J; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
  • Pan G; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
  • Schöler HR; Department for Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
  • Xu G; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
  • Liu X; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China liu_xingguo@gibh.ac
  • Pei D; Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China liu_xingguo@gibh.ac
EMBO Rep ; 17(11): 1641-1656, 2016 11.
Article em En | MEDLINE | ID: mdl-27702986
Reprogramming of somatic cells to induced pluripotent stem cells rewrites the code of cell fate at the chromatin level. Yet, little is known about this process physically. Here, we describe a fluorescence recovery after photobleaching method to assess the dynamics of heterochromatin/euchromatin and show significant heterochromatin loosening at the initial stage of reprogramming. We identify growth arrest and DNA damage-inducible protein a (Gadd45a) as a chromatin relaxer in mouse embryonic fibroblasts, which also enhances somatic cell reprogramming efficiency. We show that residue glycine 39 (G39) in Gadd45a is essential for interacting with core histones, opening chromatin and enhancing reprogramming. We further demonstrate that Gadd45a destabilizes histone-DNA interactions and facilitates the binding of Yamanaka factors to their targets for activation. Our study provides a method to screen factors that impact on chromatin structure in live cells, and identifies Gadd45a as a chromatin relaxer.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Nucleares / Heterocromatina / Proteínas de Ciclo Celular / Reprogramação Celular / Células-Tronco Pluripotentes Induzidas Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: EMBO Rep Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2016 Tipo de documento: Article País de afiliação: China País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Nucleares / Heterocromatina / Proteínas de Ciclo Celular / Reprogramação Celular / Células-Tronco Pluripotentes Induzidas Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: EMBO Rep Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2016 Tipo de documento: Article País de afiliação: China País de publicação: Reino Unido