Your browser doesn't support javascript.
loading
PPARα augments heart function and cardiac fatty acid oxidation in early experimental polymicrobial sepsis.
Standage, Stephen W; Bennion, Brock G; Knowles, Taft O; Ledee, Dolena R; Portman, Michael A; McGuire, John K; Liles, W Conrad; Olson, Aaron K.
Afiliação
  • Standage SW; Center for Lung Biology, University of Washington School of Medicine, Seattle, Washington; sws24@uw.edu.
  • Bennion BG; Department of Pediatrics (Critical Care Medicine), University of Washington School of Medicine, Seattle, Washington.
  • Knowles TO; Center for Lung Biology, University of Washington School of Medicine, Seattle, Washington.
  • Ledee DR; Department of Pediatrics (Critical Care Medicine), University of Washington School of Medicine, Seattle, Washington.
  • Portman MA; Center for Lung Biology, University of Washington School of Medicine, Seattle, Washington.
  • McGuire JK; Department of Pediatrics (Critical Care Medicine), University of Washington School of Medicine, Seattle, Washington.
  • Liles WC; Department of Pediatrics (Cardiology), University of Washington School of Medicine, Seattle, Washington.
  • Olson AK; Seattle Children's Research Institute, Seattle, Washington.
Am J Physiol Heart Circ Physiol ; 312(2): H239-H249, 2017 Feb 01.
Article em En | MEDLINE | ID: mdl-27881386
ABSTRACT
Children with sepsis and multisystem organ failure have downregulated leukocyte gene expression of peroxisome proliferator-activated receptor-α (PPARα), a nuclear hormone receptor transcription factor that regulates inflammation and lipid metabolism. Mouse models of sepsis have likewise demonstrated that the absence of PPARα is associated with decreased survival and organ injury, specifically of the heart. Using a clinically relevant mouse model of early sepsis, we found that heart function increases in wild-type (WT) mice over the first 24 h of sepsis, but that mice lacking PPARα (Ppara-/-) cannot sustain the elevated heart function necessary to compensate for sepsis pathophysiology. Left ventricular shortening fraction, measured 24 h after initiation of sepsis by echocardiography, was higher in WT mice than in Ppara-/- mice. Ex vivo working heart studies demonstrated greater developed pressure, contractility, and aortic outflow in WT compared with Ppara-/- mice. Furthermore, cardiac fatty acid oxidation was increased in WT but not in Ppara-/- mice. Regulatory pathways controlling pyruvate incorporation into the citric acid cycle were inhibited by sepsis in both genotypes, but the regulatory state of enzymes controlling fatty acid oxidation appeared to be permissive in WT mice only. Mitochondrial ultrastructure was not altered in either genotype indicating that severe mitochondrial dysfunction is unlikely at this stage of sepsis. These data suggest that PPARα expression supports the hyperdynamic cardiac response early in the course of sepsis and that increased fatty acid oxidation may prevent morbidity and mortality. NEW & NOTEWORTHY In contrast to previous studies in septic shock using experimental mouse models, we are the first to demonstrate that heart function increases early in sepsis with an associated augmentation of cardiac fatty acid oxidation. Absence of peroxisome proliferator-activated receptor-α (PPARα) results in reduced cardiac performance and fatty acid oxidation in sepsis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Disfunção Ventricular Esquerda / Sepse / PPAR alfa / Ácidos Graxos / Contração Miocárdica / Miocárdio Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Am J Physiol Heart Circ Physiol Assunto da revista: CARDIOLOGIA / FISIOLOGIA Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Disfunção Ventricular Esquerda / Sepse / PPAR alfa / Ácidos Graxos / Contração Miocárdica / Miocárdio Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Am J Physiol Heart Circ Physiol Assunto da revista: CARDIOLOGIA / FISIOLOGIA Ano de publicação: 2017 Tipo de documento: Article