Your browser doesn't support javascript.
loading
Fluorographene Modified by Grignard Reagents: A Broad Range of Functional Nanomaterials.
Mazánek, Vlastimil; Libánská, Alena; Sturala, Jirí; Bousa, Daniel; Sedmidubský, David; Pumera, Martin; Janousek, Zbynek; Plutnar, Jan; Sofer, Zdenek.
Afiliação
  • Mazánek V; Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.
  • Libánská A; Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.
  • Sturala J; Department of Organic Chemistry, University of Chemistry and Technology Prague, 166 28, Prague 6, Czech Republic.
  • Bousa D; Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.
  • Sedmidubský D; Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.
  • Pumera M; Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link 21, Singapore, 637371, Singapore.
  • Janousek Z; Institute of Organic Chemistry and Biochemistry ASCR, v.v.i. Flemingovo nám. 2, 166 10, Prague 6, Czech Republic.
  • Plutnar J; Institute of Organic Chemistry and Biochemistry ASCR, v.v.i. Flemingovo nám. 2, 166 10, Prague 6, Czech Republic.
  • Sofer Z; Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.
Chemistry ; 23(8): 1956-1964, 2017 Feb 03.
Article em En | MEDLINE | ID: mdl-27882624
Fluorographene is the youngest stoichiometric derivative of graphene; hence, its reactivity is only poorly explored. Compared to graphene, the significantly higher reactivity of C-F bonds makes this material a suitable platform for a large number of chemical modifications. Fluorographene is also the only member of the halographene family that can be prepared in the stoichiometric composition (C1 F1 ). Herein, the chemical modification of fluorographene with Grignard reagents, which are well known in organic synthesis for the formation of new C-C bonds, is presented. The reaction with alkyl magnesium bromides led to successful modification of fluorographene with ethyl, vinyl, ethynyl and propargyl groups. Chemical characterisation showed the presence of covalently bonded functional groups in a high concentration exceeding one functional group per C6 motif. The reactivity of Grignard reagents with fluorographene decreased from ethyl to ethynyl. The terminal carbon-carbon triple bonds were used for click reactions with organic azides leading to the formation of triazole rings. These findings open up a broad spectrum of opportunities for simple and robust modification of graphene by chemical reactions proceeding at room temperature under mild conditions. These results have major application potential in sensing, biomedical and energy-related applications.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chemistry Assunto da revista: QUIMICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: República Tcheca País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chemistry Assunto da revista: QUIMICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: República Tcheca País de publicação: Alemanha