Your browser doesn't support javascript.
loading
Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration.
Chen, Zongping; Zhang, Wen; Palma, Carlos-Andres; Lodi Rizzini, Alberto; Liu, Bilu; Abbas, Ahmad; Richter, Nils; Martini, Leonardo; Wang, Xiao-Ye; Cavani, Nicola; Lu, Hao; Mishra, Neeraj; Coletti, Camilla; Berger, Reinhard; Klappenberger, Florian; Kläui, Mathias; Candini, Andrea; Affronte, Marco; Zhou, Chongwu; De Renzi, Valentina; Del Pennino, Umberto; Barth, Johannes V; Räder, Hans Joachim; Narita, Akimitsu; Feng, Xinliang; Müllen, Klaus.
Afiliação
  • Chen Z; Max Planck Institute for Polymer Research , Ackermannweg 10, D-55128 Mainz, Germany.
  • Zhang W; Max Planck Institute for Polymer Research , Ackermannweg 10, D-55128 Mainz, Germany.
  • Palma CA; Physik-Department, Technische Universität München , James-Franck-Straße 1, D-85748 Garching, Germany.
  • Lodi Rizzini A; Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia , I-41125 Modena, Italy.
  • Liu B; CNR-NANO, Istituto Nanoscienze , Centro S3, I-41125 Modena, Italy.
  • Abbas A; Department of Electrical Engineering and Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States.
  • Richter N; Department of Electrical Engineering and Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States.
  • Martini L; Department of Electrical Engineering, King Abdulaziz University , Abdullah Sulayman Street, Jeddah 22254, Saudi Arabia.
  • Wang XY; Institut für Physik, Johannes Gutenberg Universität-Mainz , Staudingerweg 7, D-55128 Mainz, Germany.
  • Cavani N; Graduate School of Excellence Materials Science in Mainz, Johannes Gutenberg Universität-Mainz , Staudingerweg 9, D-55128 Mainz, Germany.
  • Lu H; Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia , I-41125 Modena, Italy.
  • Mishra N; CNR-NANO, Istituto Nanoscienze , Centro S3, I-41125 Modena, Italy.
  • Coletti C; Max Planck Institute for Polymer Research , Ackermannweg 10, D-55128 Mainz, Germany.
  • Berger R; Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia , I-41125 Modena, Italy.
  • Klappenberger F; CNR-NANO, Istituto Nanoscienze , Centro S3, I-41125 Modena, Italy.
  • Kläui M; Max Planck Institute for Polymer Research , Ackermannweg 10, D-55128 Mainz, Germany.
  • Candini A; Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia , Piazza San Silvestro 12, 56127 Pisa, Italy.
  • Affronte M; Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia , Piazza San Silvestro 12, 56127 Pisa, Italy.
  • Zhou C; Center for Advancing Electronics Dresden and Department of Chemistry and Food Chemistry, Technische Universität Dresden , Mommsenstraße 4, D-01062 Dresden, Germany.
  • De Renzi V; Physik-Department, Technische Universität München , James-Franck-Straße 1, D-85748 Garching, Germany.
  • Del Pennino U; Institut für Physik, Johannes Gutenberg Universität-Mainz , Staudingerweg 7, D-55128 Mainz, Germany.
  • Barth JV; Graduate School of Excellence Materials Science in Mainz, Johannes Gutenberg Universität-Mainz , Staudingerweg 9, D-55128 Mainz, Germany.
  • Räder HJ; CNR-NANO, Istituto Nanoscienze , Centro S3, I-41125 Modena, Italy.
  • Narita A; Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia , I-41125 Modena, Italy.
  • Feng X; CNR-NANO, Istituto Nanoscienze , Centro S3, I-41125 Modena, Italy.
  • Müllen K; Department of Electrical Engineering and Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States.
J Am Chem Soc ; 138(47): 15488-15496, 2016 11 30.
Article em En | MEDLINE | ID: mdl-27933922
ABSTRACT
Graphene nanoribbons (GNRs), quasi-one-dimensional graphene strips, have shown great potential for nanoscale electronics, optoelectronics, and photonics. Atomically precise GNRs can be "bottom-up" synthesized by surface-assisted assembly of molecular building blocks under ultra-high-vacuum conditions. However, large-scale and efficient synthesis of such GNRs at low cost remains a significant challenge. Here we report an efficient "bottom-up" chemical vapor deposition (CVD) process for inexpensive and high-throughput growth of structurally defined GNRs with varying structures under ambient-pressure conditions. The high quality of our CVD-grown GNRs is validated by a combination of different spectroscopic and microscopic characterizations. Facile, large-area transfer of GNRs onto insulating substrates and subsequent device fabrication demonstrate their promising potential as semiconducting materials, exhibiting high current on/off ratios up to 6000 in field-effect transistor devices. This value is 3 orders of magnitude higher than values reported so far for other thin-film transistors of structurally defined GNRs. Notably, on-surface mass spectrometry analyses of polymer precursors provide unprecedented evidence for the chemical structures of the resulting GNRs, especially the heteroatom doping and heterojunctions. These results pave the way toward the scalable and controllable growth of GNRs for future applications.
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Alemanha
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Alemanha