Unravelling the dissociation pathways of acetic acid upon electron transfer in potassium collisions: experimental and theoretical studies.
Phys Chem Chem Phys
; 19(2): 1083-1088, 2017 Jan 04.
Article
em En
| MEDLINE
| ID: mdl-27942639
Electron transfer in alkali-molecule collisions with gas phase acetic acid and its deuterated analogues resulting in OH- formation requires considerable internal rearrangement in the temporary negative ion. At a collision energy well above the threshold of negative ion formation, electron transfer from potassium to CH3COOH/CH3COOD and CD3COOH results not only in H transfer from CH3 to COOH/COOD, but also in H release from COOH and subsequent rearrangement to eliminate OH-. These processes are also investigated by theoretical post-Hartree-Fock and DFT calculations. The combination of both studies reveals that the most favourable intermediate mechanism occurs via diol formation. Such intramolecular H transfer is reported here for the first time in the context of electron transfer induced dissociation experiments in alkali-molecule collisions. A comprehensive fragmentation study is presented and dissociation mechanisms are suggested.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Phys Chem Chem Phys
Assunto da revista:
BIOFISICA
/
QUIMICA
Ano de publicação:
2017
Tipo de documento:
Article
País de afiliação:
Portugal
País de publicação:
Reino Unido