Your browser doesn't support javascript.
loading
Involvement of xanthine oxidase and paraoxonase 1 in the process of oxidative stress in nonalcoholic fatty liver disease.
Wang, Bing; Yang, Rui-Ning; Zhu, Yue-Rong; Xing, Ji-Cheng; Lou, Xiao-Wei; He, Yu-Jie; Ding, Qi-Long; Zhang, Ming-Yue; Qiu, Hong.
Afiliação
  • Wang B; Department of Clinical Laboratory, PLA 81 Hospital, Nanjing, Jiangsu 210002, P.R. China.
  • Yang RN; Department of Clinical Laboratory, PLA 81 Hospital, Nanjing, Jiangsu 210002, P.R. China.
  • Zhu YR; Department of Clinical Laboratory, PLA 81 Hospital, Nanjing, Jiangsu 210002, P.R. China.
  • Xing JC; Department of Clinical Laboratory, PLA 81 Hospital, Nanjing, Jiangsu 210002, P.R. China.
  • Lou XW; Department of Clinical Laboratory, PLA 81 Hospital, Nanjing, Jiangsu 210002, P.R. China.
  • He YJ; Department of Clinical Laboratory, PLA 81 Hospital, Nanjing, Jiangsu 210002, P.R. China.
  • Ding QL; Experimental and Teaching Center of Medical Basis for Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China.
  • Zhang MY; Department of Blood Transfusion, Central Hospital of Nanyang, Nanyang, Henan 473000, P.R. China.
  • Qiu H; Department of Clinical Laboratory, PLA 81 Hospital, Nanjing, Jiangsu 210002, P.R. China.
Mol Med Rep ; 15(1): 387-395, 2017 Jan.
Article em En | MEDLINE | ID: mdl-27959408
ABSTRACT
Xanthine oxidase (XOD) and paraoxonase 1 (PON1) are important enzymes in redox reactions in vivo, and are predominantly synthesized by the liver. The aim of the present study was to investigate the redox state in nonalcoholic fatty liver disease, and determine the association between the activities of XOD and PON1 and the severity of NAFLD. Sprague­Dawley rats were randomly divided into control, model and α­lipoic acid (high and low dose) groups. The rats in the NAFLD model were induced by feeding a high fat diet for 12 weeks and the in vitro cell model of hepatocyte steatosis was induced by treating L­02 cells with oleic acid for 24 h. The body weight, liver function, lipid and oxidative stress indices, and histological features of the liver were examined in the rats. Compared with the control group, the rats in the NAFLD model group showed impaired liver function, lipid disorders and damage from oxidative stress. The serum activity of XOD increased significantly from the 4th week and was markedly higher, compared with that in the control group, reaching a peak in the 12th week. The activity of PON1 was negatively correlated with that of XOD. Compared with the control cells, the activity of XOD and levels of free­fatty acids were significantly higher, and the activity of PON1 was significantly lower in the NAFLD L­02 cell model. All the above indicators were significantly improved by treatment with the antioxidant, α­lipoic acid. The activities of XOD and PON1 may be promising as markers in a noninvasive approach for detecting the severity of NAFLD clinically. α­lipoic acid had protective effects on the NAFLD rats, and the potential mechanism may be associated with the inhibition of oxidative stress and lipid peroxidation.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Xantina Oxidase / Estresse Oxidativo / Arildialquilfosfatase / Hepatopatia Gordurosa não Alcoólica / Fígado Limite: Animals Idioma: En Revista: Mol Med Rep Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Xantina Oxidase / Estresse Oxidativo / Arildialquilfosfatase / Hepatopatia Gordurosa não Alcoólica / Fígado Limite: Animals Idioma: En Revista: Mol Med Rep Ano de publicação: 2017 Tipo de documento: Article