Your browser doesn't support javascript.
loading
Local spin dynamics of iron oxide magnetic nanoparticles dispersed in different solvents with variable size and shape: A 1H NMR study.
Basini, M; Orlando, T; Arosio, P; Casula, M F; Espa, D; Murgia, S; Sangregorio, C; Innocenti, C; Lascialfari, A.
Afiliação
  • Basini M; Dipartimento di Fisica and INSTM, Università degli Studi di Milano, Milano, Italy.
  • Orlando T; EPR Research Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
  • Arosio P; Dipartimento di Fisica and INSTM, Università degli Studi di Milano, Milano, Italy.
  • Casula MF; Dipartimento di Scienze Chimiche e Geologiche and INSTM, Università di Cagliari, Monserrato, Italy.
  • Espa D; Dipartimento di Scienze Chimiche e Geologiche and INSTM, Università di Cagliari, Monserrato, Italy.
  • Murgia S; Dipartimento di Scienze Chimiche e Geologiche and INSTM, Università di Cagliari, Monserrato, Italy.
  • Sangregorio C; ICCOM-CNR and INSTM, Sesto Fiorentino, Italy.
  • Innocenti C; Dipartimento di Chimica and INSTM, Università degli studi di Firenze, Sesto Fiorentino, Italy.
  • Lascialfari A; Dipartimento di Fisica and INSTM, Università degli Studi di Milano, Milano, Italy.
J Chem Phys ; 146(3): 034703, 2017 Jan 21.
Article em En | MEDLINE | ID: mdl-28109242
ABSTRACT
Colloidal magnetic nanoparticles (MNPs) based on a nearly monodisperse iron oxide core and capped by oleic acid have been used as model systems for investigating the superparamagnetic spin dynamics by means of magnetometry measurements and nuclear magnetic resonance (1H NMR) relaxometry. The key magnetic properties (saturation magnetization, coercive field, and frequency dependent "blocking" temperature) of MNPs with different core size (3.5 nm, 8.5 nm, and 17.5 nm), shape (spherical and cubic), and dispersant (hexane and water-based formulation) have been determined. 1H NMR dispersion profiles obtained by measuring the r1 (longitudinal) and r2 (transverse) nuclear relaxivities in the frequency range 0.01-60 MHz confirmed that in all samples the physical mechanisms that drive the nuclear relaxation are the Néel reversal at low temperature and the Curie relaxation at high frequency. The magnetization reversal time at room temperature extracted from the fitting of NMR data falls in the typical range of superparamagnetic systems (10-9-10-10 s). Furthermore, from the distance of minimum approach we could conclude that water molecules do not arrive in close vicinity of the magnetic core. Our findings contribute to elucidate the local spin dynamics mechanisms in colloidal superparamagnetic nanoparticles which are useful in biomedical application as, e.g., contrast agents for magnetic resonance imaging.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: J Chem Phys Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: J Chem Phys Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Itália
...