Your browser doesn't support javascript.
loading
Tumor-homing cytotoxic human induced neural stem cells for cancer therapy.
Bagó, Juli R; Okolie, Onyi; Dumitru, Raluca; Ewend, Matthew G; Parker, Joel S; Werff, Ryan Vander; Underhill, T Michael; Schmid, Ralf S; Miller, C Ryan; Hingtgen, Shawn D.
Afiliação
  • Bagó JR; Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  • Okolie O; Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  • Dumitru R; UNC Human Pluripotent Stem Cell Core Facility, Department of Genetics, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  • Ewend MG; Department of Neurosurgery, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  • Parker JS; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  • Werff RV; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  • Underhill TM; Department of Cellular and Physiological Sciences, Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
  • Schmid RS; Department of Cellular and Physiological Sciences, Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
  • Miller CR; Division of Neuropathology and Department of Pathology and Laboratory Medicine, Department of Neurology and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
  • Hingtgen SD; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Sci Transl Med ; 9(375)2017 02 01.
Article em En | MEDLINE | ID: mdl-28148846
ABSTRACT
Engineered neural stem cells (NSCs) are a promising approach to treating glioblastoma (GBM). The ideal NSC drug carrier for clinical use should be easily isolated and autologous to avoid immune rejection. We transdifferentiated (TD) human fibroblasts into tumor-homing early-stage induced NSCs (h-iNSCTE), engineered them to express optical reporters and different therapeutic gene products, and assessed the tumor-homing migration and therapeutic efficacy of cytotoxic h-iNSCTE in patient-derived GBM models of surgical and nonsurgical disease. Molecular and functional analysis revealed that our single-factor SOX2 TD strategy converted human skin fibroblasts into h-iNSCTE that were nestin+ and expressed pathways associated with tumor-homing migration in 4 days. Time-lapse motion analysis showed that h-iNSCTE rapidly migrated to human GBM cells and penetrated human GBM spheroids, a process inhibited by blockade of CXCR4. Serial imaging showed that h-iNSCTE delivery of the proapoptotic agent tumor necrosis factor-α-related apoptosis-inducing ligand (TRAIL) reduced the size of solid human GBM xenografts 250-fold in 3 weeks and prolonged median survival from 22 to 49 days. Additionally, h-iNSCTE thymidine kinase/ganciclovir enzyme/prodrug therapy (h-iNSCTE-TK) reduced the size of patient-derived GBM xenografts 20-fold and extended survival from 32 to 62 days. Mimicking clinical NSC therapy, h-iNSCTE-TK therapy delivered into the postoperative surgical resection cavity delayed the regrowth of residual GBMs threefold and prolonged survival from 46 to 60 days. These results suggest that TD of human skin into h-iNSCTE is a platform for creating tumor-homing cytotoxic cell therapies for cancer, where the potential to avoid carrier rejection could maximize treatment durability in human trials.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Encefálicas / Glioblastoma / Ligante Indutor de Apoptose Relacionado a TNF / Células-Tronco Neurais Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Sci Transl Med Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Encefálicas / Glioblastoma / Ligante Indutor de Apoptose Relacionado a TNF / Células-Tronco Neurais Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Sci Transl Med Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos