Your browser doesn't support javascript.
loading
The Crystal Structure of Ba3Nb2O8 Revisited: A Neutron Diffraction and Solid-State NMR Study.
Wildman, Eve J; Mclaughlin, Abbie C; Macdonald, James F; Hanna, John V; Skakle, Janet M S.
Afiliação
  • Wildman EJ; Department of Chemistry, School of Natural & Computing Sciences, University of Aberdeen , Meston Walk, Aberdeen AB24 3UE, U.K.
  • Mclaughlin AC; Department of Chemistry, School of Natural & Computing Sciences, University of Aberdeen , Meston Walk, Aberdeen AB24 3UE, U.K.
  • Macdonald JF; Department of Physics, University of Warwick , Gibbet Hill Rd., Coventry CV4 7AL, U.K.
  • Hanna JV; Department of Physics, University of Warwick , Gibbet Hill Rd., Coventry CV4 7AL, U.K.
  • Skakle JM; Department of Chemistry, School of Natural & Computing Sciences, University of Aberdeen , Meston Walk, Aberdeen AB24 3UE, U.K.
Inorg Chem ; 56(5): 2653-2661, 2017 Mar 06.
Article em En | MEDLINE | ID: mdl-28186741
The structure of Ba3Nb2O8 has been investigated using high resolution neutron powder diffraction. Our results show that, while the structure has some features in common with the 9R perovskite and palmierite structures, it is a new and distinct structure. It is shown to follow a (chh)(hhc)(chh) sequence with BaO3-δ packing layers and is a cation- and anion-deficient 9H perovskite polytype. Nb atoms occupy octahedral sites with vacancies between hexagonal close-packed layers. Isolated, corner-sharing and face-sharing Nb-O octahedra all occur within the unit cell. The identification of purely octahedral Nb is supported by solid-state 93Nb wideline NMR measurements. A two-component line shape was detected: a narrow featureless resonance with an isotropic chemical shift of δiso -928 ± 5 ppm consistent with regular Nb octahedra, and a much broader featureless resonance with an approximate isotropic chemical shift in the range δiso ∼ -944 to -937 ± 10 ppm consistent with Nb octahedra influenced by O vacancies. These are both characteristic of 6-fold oxo-coordinated Nb environments. The highly distorted octahedral environments in Ba3Nb2O8 make it a potential candidate for dielectric and photocatalytic applications.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Inorg Chem Ano de publicação: 2017 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Inorg Chem Ano de publicação: 2017 Tipo de documento: Article País de publicação: Estados Unidos