Your browser doesn't support javascript.
loading
Density of states from mode expansion of the self-dynamic structure factor of a liquid metal.
Guarini, E; Bellissima, S; Bafile, U; Farhi, E; De Francesco, A; Formisano, F; Barocchi, F.
Afiliação
  • Guarini E; Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino, Italy.
  • Bellissima S; Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino, Italy.
  • Bafile U; Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy.
  • Farhi E; Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy.
  • De Francesco A; Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, F-38042 Grenoble Cedex 9, France.
  • Formisano F; Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali c/o Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, F-38042 Grenoble Cedex 9, France.
  • Barocchi F; Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali c/o Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, F-38042 Grenoble Cedex 9, France.
Phys Rev E ; 95(1-1): 012141, 2017 Jan.
Article em En | MEDLINE | ID: mdl-28208346
ABSTRACT
We show that by exploiting multi-Lorentzian fits of the self-dynamic structure factor at various wave vectors it is possible to carefully perform the Q→0 extrapolation required to determine the spectrum Z(ω) of the velocity autocorrelation function of a liquid. The smooth Q dependence of the fit parameters makes their extrapolation to Q=0 a simple procedure from which Z(ω) becomes computable, with the great advantage of solving the problems related to resolution broadening of either experimental or simulated self-spectra. Determination of a single-particle property like the spectrum of the velocity autocorrelation function turns out to be crucial to understanding the whole dynamics of the liquid. In fact, we demonstrate a clear link between the collective mode frequencies and the shape of the frequency distribution Z(ω). In the specific case considered in this work, i.e., liquid Au, analysis of Z(ω) revealed the presence, along with propagating sound waves, of lower frequency modes that were not observed before by means of dynamic structure factor measurements. By exploiting ab initio simulations for this liquid metal we could also calculate the transverse current-current correlation spectra and clearly identify the transverse nature of the above mentioned less energetic modes. Evidence of propagating transverse excitations has actually been reported in various works in the recent literature. However, in some cases, like the present one, these modes are difficult to detect in density fluctuation spectra. We show here that the analysis of the single-particle dynamics is able to unveil their presence in a very effective way. The properties here shown to characterize Z(ω), and the information in it contained therefore allow us to identify it with the density of states (DoS) of the liquid. We demonstrate that only nonhydrodynamic modes contribute to the DoS, thus establishing its purely microscopic origin. Finally, as a by-product of this work, we provide our estimate of the self-diffusion coefficient of liquid gold just above melting.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Phys Rev E Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Phys Rev E Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Itália