Your browser doesn't support javascript.
loading
A Predictive 3D Multi-Scale Model of Biliary Fluid Dynamics in the Liver Lobule.
Meyer, Kirstin; Ostrenko, Oleksandr; Bourantas, Georgios; Morales-Navarrete, Hernan; Porat-Shliom, Natalie; Segovia-Miranda, Fabian; Nonaka, Hidenori; Ghaemi, Ali; Verbavatz, Jean-Marc; Brusch, Lutz; Sbalzarini, Ivo; Kalaidzidis, Yannis; Weigert, Roberto; Zerial, Marino.
Afiliação
  • Meyer K; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany.
  • Ostrenko O; Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Saxony 01062, Germany; Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Saxony 01062, Germany.
  • Bourantas G; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany; Faculty of Science, Technology and Communication, University of Luxembourg, 1359 Luxembourg, Luxembourg; Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Saxony 01062, Germa
  • Morales-Navarrete H; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany.
  • Porat-Shliom N; Intracellular Membrane Trafficking Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
  • Segovia-Miranda F; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany.
  • Nonaka H; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany.
  • Ghaemi A; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany.
  • Verbavatz JM; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany.
  • Brusch L; Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Saxony 01062, Germany; Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Saxony 01062, Germany.
  • Sbalzarini I; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany; Faculty of Computer Science, Technische Universität Dresden, Dresden, Saxony 01187, Germany; Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Saxony 01062, Germany.
  • Kalaidzidis Y; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany; Faculty of Bioengineering and Bioinformatics, Moscow State University, 119991 Moscow, Russia.
  • Weigert R; Intracellular Membrane Trafficking Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
  • Zerial M; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany; Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Saxony 01062, Germany. Electronic address: zerial@mpi-cbg.de.
Cell Syst ; 4(3): 277-290.e9, 2017 03 22.
Article em En | MEDLINE | ID: mdl-28330614
ABSTRACT
Bile, the central metabolic product of the liver, is transported by the bile canaliculi network. The impairment of bile flow in cholestatic liver diseases has urged a demand for insights into its regulation. Here, we developed a predictive 3D multi-scale model that simulates fluid dynamic properties successively from the subcellular to the tissue level. The model integrates the structure of the bile canalicular network in the mouse liver lobule, as determined by high-resolution confocal and serial block-face scanning electron microscopy, with measurements of bile transport by intravital microscopy. The combined experiment-theory approach revealed spatial heterogeneities of biliary geometry and hepatocyte transport activity. Based on this, our model predicts gradients of bile velocity and pressure in the liver lobule. Validation of the model predictions by pharmacological inhibition of Rho kinase demonstrated a requirement of canaliculi contractility for bile flow in vivo. Our model can be applied to functionally characterize liver diseases and quantitatively estimate biliary transport upon drug-induced liver injury.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Canalículos Biliares / Sistema Biliar Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Revista: Cell Syst Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Canalículos Biliares / Sistema Biliar Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Revista: Cell Syst Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Alemanha