Your browser doesn't support javascript.
loading
Detection of drug-drug interactions through data mining studies using clinical sources, scientific literature and social media.
Vilar, Santiago; Friedman, Carol; Hripcsak, George.
Afiliação
  • Vilar S; Department of Biomedical Informatics, Columbia University, New York, USA.
  • Friedman C; Department of Organic Chemistry, University of Santiago de Compostela, Spain.
  • Hripcsak G; Department of Biomedical Informatics, Columbia University, New York, USA.
Brief Bioinform ; 19(5): 863-877, 2018 09 28.
Article em En | MEDLINE | ID: mdl-28334070
Drug-drug interactions (DDIs) constitute an important concern in drug development and postmarketing pharmacovigilance. They are considered the cause of many adverse drug effects exposing patients to higher risks and increasing public health system costs. Methods to follow-up and discover possible DDIs causing harm to the population are a primary aim of drug safety researchers. Here, we review different methodologies and recent advances using data mining to detect DDIs with impact on patients. We focus on data mining of different pharmacovigilance sources, such as the US Food and Drug Administration Adverse Event Reporting System and electronic health records from medical institutions, as well as on the diverse data mining studies that use narrative text available in the scientific biomedical literature and social media. We pay attention to the strengths but also further explain challenges related to these methods. Data mining has important applications in the analysis of DDIs showing the impact of the interactions as a cause of adverse effects, extracting interactions to create knowledge data sets and gold standards and in the discovery of novel and dangerous DDIs.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Interações Medicamentosas / Mineração de Dados Tipo de estudo: Diagnostic_studies Limite: Humans País/Região como assunto: America do norte Idioma: En Revista: Brief Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Interações Medicamentosas / Mineração de Dados Tipo de estudo: Diagnostic_studies Limite: Humans País/Região como assunto: America do norte Idioma: En Revista: Brief Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido