Your browser doesn't support javascript.
loading
An Organoid-Based Model of Cortical Development Identifies Non-Cell-Autonomous Defects in Wnt Signaling Contributing to Miller-Dieker Syndrome.
Iefremova, Vira; Manikakis, George; Krefft, Olivia; Jabali, Ammar; Weynans, Kevin; Wilkens, Ruven; Marsoner, Fabio; Brändl, Björn; Müller, Franz-Josef; Koch, Philipp; Ladewig, Julia.
Afiliação
  • Iefremova V; Institute of Reconstructive Neurobiology, University of Bonn, Bonn 53127, Germany.
  • Manikakis G; Institute of Reconstructive Neurobiology, University of Bonn, Bonn 53127, Germany.
  • Krefft O; Institute of Reconstructive Neurobiology, University of Bonn, Bonn 53127, Germany.
  • Jabali A; Institute of Reconstructive Neurobiology, University of Bonn, Bonn 53127, Germany.
  • Weynans K; Institute of Reconstructive Neurobiology, University of Bonn, Bonn 53127, Germany.
  • Wilkens R; Institute of Reconstructive Neurobiology, University of Bonn, Bonn 53127, Germany.
  • Marsoner F; Institute of Reconstructive Neurobiology, University of Bonn, Bonn 53127, Germany.
  • Brändl B; Department of Psychiatry and Psychotherapy, University Hospital Schleswig Holstein, Kiel 24105, Germany.
  • Müller FJ; Department of Psychiatry and Psychotherapy, University Hospital Schleswig Holstein, Kiel 24105, Germany.
  • Koch P; Institute of Reconstructive Neurobiology, University of Bonn, Bonn 53127, Germany. Electronic address: philipp.koch@uni-bonn.de.
  • Ladewig J; Institute of Reconstructive Neurobiology, University of Bonn, Bonn 53127, Germany. Electronic address: jladewig@uni-bonn.de.
Cell Rep ; 19(1): 50-59, 2017 04 04.
Article em En | MEDLINE | ID: mdl-28380362
ABSTRACT
Miller-Dieker syndrome (MDS) is caused by a heterozygous deletion of chromosome 17p13.3 involving the genes LIS1 and YWHAE (coding for 14.3.3ε) and leads to malformations during cortical development. Here, we used patient-specific forebrain-type organoids to investigate pathological changes associated with MDS. Patient-derived organoids are significantly reduced in size, a change accompanied by a switch from symmetric to asymmetric cell division of ventricular zone radial glia cells (vRGCs). Alterations in microtubule network organization in vRGCs and a disruption of cortical niche architecture, including altered expression of cell adhesion molecules, are also observed. These phenotypic changes lead to a non-cell-autonomous disturbance of the N-cadherin/ß-catenin signaling axis. Reinstalling active ß-catenin signaling rescues division modes and ameliorates growth defects. Our data define the role of LIS1 and 14.3.3ε in maintaining the cortical niche and highlight the utility of organoid-based systems for modeling complex cell-cell interactions in vitro.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Organoides / Córtex Cerebral / Lissencefalias Clássicas e Heterotopias Subcorticais em Banda / Via de Sinalização Wnt Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Cell Rep Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Alemanha País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Organoides / Córtex Cerebral / Lissencefalias Clássicas e Heterotopias Subcorticais em Banda / Via de Sinalização Wnt Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Cell Rep Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Alemanha País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA