Your browser doesn't support javascript.
loading
Modified Bacteriophage S16 Long Tail Fiber Proteins for Rapid and Specific Immobilization and Detection of Salmonella Cells.
Denyes, Jenna M; Dunne, Matthew; Steiner, Stanislava; Mittelviefhaus, Maximilian; Weiss, Agnes; Schmidt, Herbert; Klumpp, Jochen; Loessner, Martin J.
Afiliação
  • Denyes JM; Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland.
  • Dunne M; Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland.
  • Steiner S; Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland.
  • Mittelviefhaus M; Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland.
  • Weiss A; Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany.
  • Schmidt H; Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany.
  • Klumpp J; Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland.
  • Loessner MJ; Institute of Food Nutrition and Health, ETH Zurich, Zurich, Switzerland martin.loessner@ethz.ch.
Appl Environ Microbiol ; 83(12)2017 06 15.
Article em En | MEDLINE | ID: mdl-28411223
ABSTRACT
Bacteriophage-based assays and biosensors rival traditional antibody-based immunoassays for detection of low-level Salmonella contaminations. In this study, we harnessed the binding specificity of the long tail fiber (LTF) from bacteriophage S16 as an affinity molecule for the immobilization, enrichment, and detection of Salmonella We demonstrate that paramagnetic beads (MBs) coated with recombinant gp37-gp38 LTF complexes (LTF-MBs) are highly effective tools for rapid affinity magnetic separation and enrichment of Salmonella Within 45 min, the LTF-MBs consistently captured over 95% of Salmonella enterica serovar Typhimurium cells from suspensions containing from 10 to 105 CFU · ml-1, and they yielded equivalent recovery rates (93% ± 5%, n = 10) for other Salmonella strains tested. LTF-MBs also captured Salmonella cells from various food sample preenrichments, allowing the detection of initial contaminations of 1 to 10 CFU per 25 g or ml. While plating of bead-captured cells allowed ultrasensitive but time-consuming detection, the integration of LTF-based enrichment into a sandwich assay with horseradish peroxidase-conjugated LTF (HRP-LTF) as a detection probe produced a rapid and easy-to-use Salmonella detection assay. The novel enzyme-linked LTF assay (ELLTA) uses HRP-LTF to label bead-captured Salmonella cells for subsequent identification by HRP-catalyzed conversion of chromogenic 3,3',5,5'-tetramethylbenzidine substrate. The color development was proportional for Salmonella concentrations between 102 and 107 CFU · ml-1 as determined by spectrophotometric quantification. The ELLTA assay took 2 h to complete and detected as few as 102 CFU · ml-1S Typhimurium cells. It positively identified 21 different Salmonella strains, with no cross-reactivity for other bacteria. In conclusion, the phage-based ELLTA represents a rapid, sensitive, and specific diagnostic assay that appears to be superior to other currently available tests.IMPORTANCE The incidence of foodborne diseases has increased over the years, resulting in major global public health issues. Conventional methods for pathogen detection can be laborious and expensive, and they require lengthy preenrichment steps. Rapid enrichment-based diagnostic assays, such as immunomagnetic separation, can reduce detection times while also remaining sensitive and specific. A critical component in these tests is implementing affinity molecules that retain the ability to specifically capture target pathogens over a wide range of in situ applications. The protein complex that forms the distal tip of the bacteriophage S16 long tail fiber is shown here to represent a highly sensitive affinity molecule for the specific enrichment and detection of Salmonella Phage-encoded long tail fibers have huge potential for development as novel affinity molecules for robust and specific diagnostics of a vast spectrum of bacteria.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Salmonella typhimurium / Bacteriófagos / Imunoensaio / Técnicas Biossensoriais / Proteínas da Cauda Viral / Separação Imunomagnética Tipo de estudo: Diagnostic_studies / Evaluation_studies Idioma: En Revista: Appl Environ Microbiol Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Salmonella typhimurium / Bacteriófagos / Imunoensaio / Técnicas Biossensoriais / Proteínas da Cauda Viral / Separação Imunomagnética Tipo de estudo: Diagnostic_studies / Evaluation_studies Idioma: En Revista: Appl Environ Microbiol Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Suíça