Your browser doesn't support javascript.
loading
High-resolution myogenic lineage mapping by single-cell mass cytometry.
Porpiglia, Ermelinda; Samusik, Nikolay; Ho, Andrew Tri Van; Cosgrove, Benjamin D; Mai, Thach; Davis, Kara L; Jager, Astraea; Nolan, Garry P; Bendall, Sean C; Fantl, Wendy J; Blau, Helen M.
Afiliação
  • Porpiglia E; Blau Laboratory, Stanford University School of Medicine, Stanford, California 94305, USA.
  • Samusik N; Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California 94305, USA.
  • Ho ATV; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
  • Cosgrove BD; Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California 94305, USA.
  • Mai T; Nolan Laboratory, Stanford University School of Medicine, Stanford, California 94305, USA.
  • Davis KL; Blau Laboratory, Stanford University School of Medicine, Stanford, California 94305, USA.
  • Jager A; Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California 94305, USA.
  • Nolan GP; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
  • Bendall SC; Blau Laboratory, Stanford University School of Medicine, Stanford, California 94305, USA.
  • Fantl WJ; Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California 94305, USA.
  • Blau HM; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
Nat Cell Biol ; 19(5): 558-567, 2017 05.
Article em En | MEDLINE | ID: mdl-28414312
ABSTRACT
Muscle regeneration is a dynamic process during which cell state and identity change over time. A major roadblock has been a lack of tools to resolve a myogenic progression in vivo. Here we capitalize on a transformative technology, single-cell mass cytometry (CyTOF), to identify in vivo skeletal muscle stem cell and previously unrecognized progenitor populations that precede differentiation. We discovered two cell surface markers, CD9 and CD104, whose combined expression enabled in vivo identification and prospective isolation of stem and progenitor cells. Data analysis using the X-shift algorithm paired with single-cell force-directed layout visualization defined a molecular signature of the activated stem cell state (CD44+/CD98+/MyoD+) and delineated a myogenic trajectory during recovery from acute muscle injury. Our studies uncover the dynamics of skeletal muscle regeneration in vivo and pave the way for the elucidation of the regulatory networks that underlie cell-state transitions in muscle diseases and ageing.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Regeneração / Células-Tronco / Separação Celular / Músculo Esquelético / Linhagem da Célula / Desenvolvimento Muscular / Mioblastos Esqueléticos / Análise de Célula Única / Citometria de Fluxo Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Nat Cell Biol Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Regeneração / Células-Tronco / Separação Celular / Músculo Esquelético / Linhagem da Célula / Desenvolvimento Muscular / Mioblastos Esqueléticos / Análise de Célula Única / Citometria de Fluxo Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Nat Cell Biol Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos