Your browser doesn't support javascript.
loading
Redox-triggered mixing and demixing of surfactants within assemblies formed in solution and at surfaces.
Smith, Timothy J; Wang, Chenxuan; Abbott, Nicholas L.
Afiliação
  • Smith TJ; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706-1607, United States. Electronic address: tjsmith8@wisc.edu.
  • Wang C; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706-1607, United States. Electronic address: cwang379@wisc.edu.
  • Abbott NL; Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706-1607, United States. Electronic address: nlabbott@wisc.edu.
J Colloid Interface Sci ; 502: 122-133, 2017 Sep 15.
Article em En | MEDLINE | ID: mdl-28478219
We report experiments that test the hypothesis that redox-triggered changes in the architectures of surfactants permit control of mixing of surfactants within assemblies. Specifically, we describe surface tension, light scattering, atomic force microscopy, and quartz crystal microbalance measurements that characterize the redox-dependent behaviors of cationic surfactants with a ferrocene group located either at the surfactant terminus (11-ferrocenylundecyl-trimethylammonium bromide; FTMA) or head (N,N-dimethylferrocenylmethyldecylammonium bromide; DMFA). In bulk solution, we find that reduced and oxidized FTMA do not mix within micellar assemblies but that reduced and oxidized DMFA do form mixed micelles. Because oxidized FTMA has the architecture of a bolaform surfactant whereas oxidized DMFA has a conventional surfactant architecture with a divalent head group, these results suggest that redox-triggered changes in molecular architecture permit control of the extent of mixing of surfactants in micellar assemblies in bulk solution. This conclusion receives further support from measurements performed with mixtures of dodecyltrimethylammonium bromide and FTMA, with FTMA in either reduced or oxidized states, and was found to extend to hemimicellar assemblies formed at hydrophobic solid surfaces but not to mixed monolayers formed at the surface of water. The latter is attributed to differences in the conformations of surfactants within monolayers and micellar assemblies. Overall, these results provide insight into the design of surfactant assemblies within which mixing can be controlled reversibly using redox processes.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2017 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2017 Tipo de documento: Article País de publicação: Estados Unidos