Your browser doesn't support javascript.
loading
Naturally acidified habitat selects for ocean acidification-tolerant mussels.
Thomsen, Jörn; Stapp, Laura S; Haynert, Kristin; Schade, Hanna; Danelli, Maria; Lannig, Gisela; Wegner, K Mathias; Melzner, Frank.
Afiliação
  • Thomsen J; Helmholtz Centre for Ocean Research Kiel (GEOMAR), 24105 Kiel, Germany.
  • Stapp LS; Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany.
  • Haynert K; University of Bremen, 28359 Bremen, Germany.
  • Schade H; Helmholtz Centre for Ocean Research Kiel (GEOMAR), 24105 Kiel, Germany.
  • Danelli M; Marine Research Department, Senckenberg am Meer, 26382 Wilhelmshaven, Germany.
  • Lannig G; Helmholtz Centre for Ocean Research Kiel (GEOMAR), 24105 Kiel, Germany.
  • Wegner KM; Helmholtz Centre for Ocean Research Kiel (GEOMAR), 24105 Kiel, Germany.
  • Melzner F; Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany.
Sci Adv ; 3(4): e1602411, 2017 Apr.
Article em En | MEDLINE | ID: mdl-28508039
Ocean acidification severely affects bivalves, especially their larval stages. Consequently, the fate of this ecologically and economically important group depends on the capacity and rate of evolutionary adaptation to altered ocean carbonate chemistry. We document successful settlement of wild mussel larvae (Mytilus edulis) in a periodically CO2-enriched habitat. The larval fitness of the population originating from the CO2-enriched habitat was compared to the response of a population from a nonenriched habitat in a common garden experiment. The high CO2-adapted population showed higher fitness under elevated Pco2 (partial pressure of CO2) than the non-adapted cohort, demonstrating, for the first time, an evolutionary response of a natural mussel population to ocean acidification. To assess the rate of adaptation, we performed a selection experiment over three generations. CO2 tolerance differed substantially between the families within the F1 generation, and survival was drastically decreased in the highest, yet realistic, Pco2 treatment. Selection of CO2-tolerant F1 animals resulted in higher calcification performance of F2 larvae during early shell formation but did not improve overall survival. Our results thus reveal significant short-term selective responses of traits directly affected by ocean acidification and long-term adaptation potential in a key bivalve species. Because immediate response to selection did not directly translate into increased fitness, multigenerational studies need to take into consideration the multivariate nature of selection acting in natural habitats. Combinations of short-term selection with long-term adaptation in populations from CO2-enriched versus nonenriched natural habitats represent promising approaches for estimating adaptive potential of organisms facing global change.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Mudança Climática / Mytilus edulis / Aclimatação Limite: Animals Idioma: En Revista: Sci Adv Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Alemanha País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Mudança Climática / Mytilus edulis / Aclimatação Limite: Animals Idioma: En Revista: Sci Adv Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Alemanha País de publicação: Estados Unidos