Structure-activity relationships for flavone interactions with amyloid ß reveal a novel anti-aggregatory and neuroprotective effect of 2',3',4'-trihydroxyflavone (2-D08).
Bioorg Med Chem
; 25(14): 3827-3834, 2017 07 15.
Article
em En
| MEDLINE
| ID: mdl-28559058
Naturally-occurring flavonoids have well documented anti-aggregatory and neuroprotective properties against the hallmark toxic protein in Alzheimer's disease, amyloid ß (Aß). However the extensive diversity of flavonoids has limited the insight into the precise structure-activity relationships that confer such bioactive properties against the Aß protein. In the present study we have characterised the Aß binding properties, anti-aggregatory and neuroprotective effects of a discreet set of flavones, including the recently described novel protein sumoylation inhibitor 2',3',4'-trihydroxyflavone (2-D08). Quercetin, transilitin, jaceosidin, nobiletin and 2-D08 were incubated with human Aß1-42 for 48h in vitro and effects on Aß fibrillisation kinetics and morphology measured using Thioflavin T (ThT) and electron microscopy respectively, in addition to effects on neuronal PC12 cell viability. Of the flavones studied, only quercetin, transilitin and 2-D08 significantly inhibited Aß1-42 aggregation and toxicity in PC12 cells. Of those, 2-D08 was the most effective inhibitor. The strong anti-amyloid activity of 2-D08 indicates that extensive hydroxylation in the B ring is the most important determinant of activity against ß amyloid within the flavone scaffold. The lack of efficacy of jaceosidin and nobiletin indicate that extension of B ring hydroxylation with methoxyl groups result in an incremental loss of anti-fibrillar and neuroprotective activity, highlighting the constraint to vicinal hydroxyl groups in the B ring for effective inhibition of aggregation. These findings reveal further structural insights into anti-amyloid bioactivity of flavonoids in addition to a novel and efficacious anti-aggregatory and neuroprotective effect of the semi-synthetic flavone and sumoylation inhibitor 2',3',4'-trihydroxyflavone (2-D08). Such modified flavones may facilitate drug development targeting multiple pathways in neurodegenerative disease.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Fragmentos de Peptídeos
/
Peptídeos beta-Amiloides
/
Fármacos Neuroprotetores
/
Flavonas
Limite:
Animals
/
Humans
Idioma:
En
Revista:
Bioorg Med Chem
Assunto da revista:
BIOQUIMICA
/
QUIMICA
Ano de publicação:
2017
Tipo de documento:
Article
País de afiliação:
Austrália
País de publicação:
Reino Unido