Your browser doesn't support javascript.
loading
Sub-1 nm Nanowire Based Superlattice Showing High Strength and Low Modulus.
Liu, Huiling; Gong, Qihua; Yue, Yonghai; Guo, Lin; Wang, Xun.
Afiliação
  • Liu H; Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University , Beijing, 100084, China.
  • Gong Q; Institute for New Energy Materials and Low-Carbon Technologies, Tianjin University of Technology , Tianjin, 300384, China.
  • Yue Y; School of Chemistry, Beihang University , Beijing, 100191, China.
  • Guo L; School of Chemistry, Beihang University , Beijing, 100191, China.
  • Wang X; School of Chemistry, Beihang University , Beijing, 100191, China.
J Am Chem Soc ; 139(25): 8579-8585, 2017 06 28.
Article em En | MEDLINE | ID: mdl-28602071
Polymers possess special dimension-dependent processing flexibility which is always absent in inorganic materials. Traditional inorganic nanowires own similar dimensions to polymers, but usually lack near-molecular diameters and the related properties. Here we report that inorganic nanowires with sub1 nm diameter and microscale length can be electrospinningly processed into superstructures including smooth fibers and large-area mat by tuning the viscosity and surface tension of the colloidal nanowires solution. These superstructures have shown both flexible texture and excellent mechanical properties (712.5 MPa for tensile strength, 10.3 GPa for elastic modulus) while retaining properties arising from inorganic components.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2017 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2017 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos