Your browser doesn't support javascript.
loading
Transient Nanoscopic Phase Separation in Biological Lipid Membranes Resolved by Planar Plasmonic Antennas.
Winkler, Pamina M; Regmi, Raju; Flauraud, Valentin; Brugger, Jürgen; Rigneault, Hervé; Wenger, Jérôme; García-Parajo, María F.
Afiliação
  • Winkler PM; Institut de Ciencies Fotoniques (ICFO), The Barcelona Institute of Science and Technology , Barcelona, Spain.
  • Regmi R; Institut de Ciencies Fotoniques (ICFO), The Barcelona Institute of Science and Technology , Barcelona, Spain.
  • Flauraud V; Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel , Marseille, France.
  • Brugger J; Microsystems Laboratory, Institute of Microengineering, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland.
  • Rigneault H; Microsystems Laboratory, Institute of Microengineering, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland.
  • Wenger J; Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel , Marseille, France.
  • García-Parajo MF; Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel , Marseille, France.
ACS Nano ; 11(7): 7241-7250, 2017 07 25.
Article em En | MEDLINE | ID: mdl-28696660
ABSTRACT
Nanoscale membrane assemblies of sphingolipids, cholesterol, and certain proteins, also known as lipid rafts, play a crucial role in facilitating a broad range of important cell functions. Whereas on living cell membranes lipid rafts have been postulated to have nanoscopic dimensions and to be highly transient, the existence of a similar type of dynamic nanodomains in multicomponent lipid bilayers has been questioned. Here, we perform fluorescence correlation spectroscopy on planar plasmonic antenna arrays with different nanogap sizes to assess the dynamic nanoscale organization of mimetic biological membranes. Our approach takes advantage of the highly enhanced and confined excitation light provided by the nanoantennas together with their outstanding planarity to investigate membrane regions as small as 10 nm in size with microsecond time resolution. Our diffusion data are consistent with the coexistence of transient nanoscopic domains in both the liquid-ordered and the liquid-disordered microscopic phases of multicomponent lipid bilayers. These nanodomains have characteristic residence times between 30 and 150 µs and sizes around 10 nm, as inferred from the diffusion data. Thus, although microscale phase separation occurs on mimetic membranes, nanoscopic domains also coexist, suggesting that these transient assemblies might be similar to those occurring in living cells, which in the absence of raft-stabilizing proteins are poised to be short-lived. Importantly, our work underscores the high potential of photonic nanoantennas to interrogate the nanoscale heterogeneity of native biological membranes with ultrahigh spatiotemporal resolution.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microdomínios da Membrana / Transição de Fase / Bicamadas Lipídicas Tipo de estudo: Prognostic_studies Idioma: En Revista: ACS Nano Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microdomínios da Membrana / Transição de Fase / Bicamadas Lipídicas Tipo de estudo: Prognostic_studies Idioma: En Revista: ACS Nano Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Espanha
...