Your browser doesn't support javascript.
loading
Profiling of Microbial Colonies for High-Throughput Engineering of Multistep Enzymatic Reactions via Optically Guided Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry.
Si, Tong; Li, Bin; Comi, Troy J; Wu, Yuwei; Hu, Pingfan; Wu, Yuying; Min, Yuhao; Mitchell, Douglas A; Zhao, Huimin; Sweedler, Jonathan V.
Afiliação
  • Li B; State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, China.
J Am Chem Soc ; 139(36): 12466-12473, 2017 09 13.
Article em En | MEDLINE | ID: mdl-28792758
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry (MS) imaging has been used for rapid phenotyping of enzymatic activities, but is mainly limited to single-step conversions. Herein we report a label-free method for high-throughput engineering of multistep biochemical reactions based on optically guided MALDI-ToF MS analysis of bacterial colonies. The bacterial cells provide containment of multiple enzymes and access to substrates and cofactors via metabolism. Automated MALDI-ToF MS acquisition from randomly distributed colonies simplifies procedures to prepare strain libraries without liquid handling. MALDI-ToF MS profiling was utilized to screen both substrate and enzyme libraries for natural product biosynthesis. Computational algorithms were developed to process and visualize the resulting mass spectral data sets. For analogues of the peptidic antibiotic plantazolicin, multivariate analyses by t-distributed stochastic neighbor embedding were used to group similar spectra for rapid identification of nonisobaric variants. After MALDI-ToF MS screening, follow-up analyses using high-resolution MS and tandem MS were readily performed on the same sample target. Separately, relative ion intensities of rhamnolipid congeners with various lipid moieties were evaluated to engineer enzymatic specificity. The glycolipid profiles of each colony were overlaid with optical images to facilitate the recovery of desirable mutants. For both the antibiotic and rhamnolipid cases, large populations of colonies were rapidly surveyed at the molecular level, providing information-rich insights not easily obtained with traditional screening assays. Utilizing standard microbiological techniques with routine microscopy and MALDI-ToF MS instruments, this simple yet effective workflow is applicable for a wide range of screening campaigns targeting multistep enzymatic reactions.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bactérias / Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz / Enzimas / Ensaios de Triagem em Larga Escala Tipo de estudo: Qualitative_research Idioma: En Revista: J Am Chem Soc Ano de publicação: 2017 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bactérias / Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz / Enzimas / Ensaios de Triagem em Larga Escala Tipo de estudo: Qualitative_research Idioma: En Revista: J Am Chem Soc Ano de publicação: 2017 Tipo de documento: Article País de publicação: Estados Unidos