Your browser doesn't support javascript.
loading
Thermospheric Nitric Oxide Response to Shock-led Storms.
Knipp, D J; Pette, D V; Kilcommons, L M; Isaacs, T L; Cruz, A A; Mlynczak, M G; Hunt, L A; Lin, C Y.
Afiliação
  • Knipp DJ; Aerospace Engineering Sciences, University of Colorado, Boulder, CO.
  • Pette DV; High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO.
  • Kilcommons LM; Aerospace Engineering Sciences, University of Colorado, Boulder, CO.
  • Isaacs TL; Aerospace Engineering Sciences, University of Colorado, Boulder, CO.
  • Cruz AA; Aerospace Engineering Sciences, University of Colorado, Boulder, CO.
  • Mlynczak MG; Aerospace Engineering Sciences, University of Colorado, Boulder, CO.
  • Hunt LA; Science Directorate, NASA Langley Research Center, Hampton, Virginia, USA.
  • Lin CY; Science Systems and Applications, Inc., Hampton, Virginia, USA.
Space Weather ; 15(2): 325-342, 2017 Feb.
Article em En | MEDLINE | ID: mdl-28824340
We present a multi-year superposed epoch study of the Sounding of the Atmosphere using Broadband Emission Radiometry nitric oxide (NO) emission data. NO is a trace constituent in the thermosphere that acts as cooling agent via infrared (IR) emissions. The NO cooling competes with storm time thermospheric heating resulting in a thermostat effect. Our study of nearly 200 events reveals that shock-led interplanetary coronal mass ejections (ICMEs) are prone to early and excessive thermospheric NO production and IR emissions. Excess NO emissions can arrest thermospheric expansion by cooling the thermosphere during intense storms. The strongest events curtail the interval of neutral density increase and produce a phenomenon known as thermospheric 'overcooling'. We use Defense Meteorological Satellite Program particle precipitation data to show that interplanetary shocks and their ICME drivers can more than double the fluxes of precipitating particles that are known to trigger the production of thermospheric NO. Coincident increases in Joule heating likely amplify the effect. In turn, NO emissions more than double. We discuss the roles and features of shock/sheath structures that allow the thermosphere to temper the effects of extreme storm time energy input and explore the implication these structures may have on mesospheric NO. Shock-driven thermospheric NO IR cooling likely plays an important role in satellite drag forecasting challenges during extreme events.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Space Weather Ano de publicação: 2017 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Space Weather Ano de publicação: 2017 Tipo de documento: Article País de publicação: Estados Unidos