Dynein light chain regulates adaptive and innate B cell development by distinctive genetic mechanisms.
PLoS Genet
; 13(9): e1007010, 2017 Sep.
Article
em En
| MEDLINE
| ID: mdl-28922373
Mechanistic differences in the development and function of adaptive, high-affinity antibody-producing B-2 cells and innate-like, "natural" antibody-producing B-1a cells remain poorly understood. Here we show that the multi-functional dynein light chain (DYNLL1/LC8) plays important roles in the establishment of B-1a cells in the peritoneal cavity and in the ongoing development of B-2 lymphoid cells in the bone marrow of mice. Epistasis analyses indicate that Dynll1 regulates B-1a and early B-2 cell development in a single, linear pathway with its direct transcriptional activator ASCIZ (ATMIN/ZNF822), and that the two genes also have complementary functions during late B-2 cell development. The B-2 cell defects caused by loss of DYNLL1 were associated with lower levels of the anti-apoptotic protein BCL-2, and could be supressed by deletion of pro-apoptotic BIM which is negatively regulated by both DYNLL1 and BCL-2. Defects in B cell development caused by loss of DYNLL1 could also be partially suppressed by a pre-arranged SWHEL Igm-B cell receptor transgene. In contrast to the rescue of B-2 cell numbers, the B-1a cell deficiency in Dynll1-deleted mice could not be suppressed by the loss of Bim, and was further compounded by the SWHEL transgene. Conversely, oncogenic MYC expression, which is synthetic lethal with Dynll1 deletion in B-2 cells, did not further reduce B-1a cell numbers in Dynll1-defcient mice. Finally, we found that the ASCIZ-DYNLL1 axis was also required for the early-juvenile development of aggressive MYC-driven and p53-deficient B cell lymphomas. These results identify ASCIZ and DYNLL1 as the core of a transcriptional circuit that differentially regulates the development of the B-1a and B-2 B lymphoid cell lineages and plays a critical role in lymphomagenesis.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Fatores de Transcrição
/
Linfócitos B
/
Linfoma de Células B
/
Dineínas
Tipo de estudo:
Prognostic_studies
Limite:
Animals
/
Humans
Idioma:
En
Revista:
PLoS Genet
Assunto da revista:
GENETICA
Ano de publicação:
2017
Tipo de documento:
Article
País de afiliação:
Austrália
País de publicação:
Estados Unidos