Your browser doesn't support javascript.
loading
Planar Optical Nanoantennas Resolve Cholesterol-Dependent Nanoscale Heterogeneities in the Plasma Membrane of Living Cells.
Regmi, Raju; Winkler, Pamina M; Flauraud, Valentin; Borgman, Kyra J E; Manzo, Carlo; Brugger, Jürgen; Rigneault, Hervé; Wenger, Jérôme; García-Parajo, María F.
Afiliação
  • Regmi R; ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Barcelona, Spain.
  • Winkler PM; Aix Marseille Univ , CNRS, Centrale Marseille, Institut Fresnel, Marseille, France.
  • Flauraud V; ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Barcelona, Spain.
  • Borgman KJE; Microsystems Laboratory, Institute of Microengineering, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland.
  • Manzo C; ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Barcelona, Spain.
  • Brugger J; ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Barcelona, Spain.
  • Rigneault H; Microsystems Laboratory, Institute of Microengineering, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland.
  • Wenger J; Aix Marseille Univ , CNRS, Centrale Marseille, Institut Fresnel, Marseille, France.
  • García-Parajo MF; Aix Marseille Univ , CNRS, Centrale Marseille, Institut Fresnel, Marseille, France.
Nano Lett ; 17(10): 6295-6302, 2017 10 11.
Article em En | MEDLINE | ID: mdl-28926278
ABSTRACT
Optical nanoantennas can efficiently confine light into nanoscopic hotspots, enabling single-molecule detection sensitivity at biological relevant conditions. This innovative approach to breach the diffraction limit offers a versatile platform to investigate the dynamics of individual biomolecules in living cell membranes and their partitioning into cholesterol-dependent lipid nanodomains. Here, we present optical nanoantenna arrays with accessible surface hotspots to study the characteristic diffusion dynamics of phosphoethanolamine (PE) and sphingomyelin (SM) in the plasma membrane of living cells at the nanoscale. Fluorescence burst analysis and fluorescence correlation spectroscopy performed on nanoantennas of different gap sizes show that, unlike PE, SM is transiently trapped in cholesterol-enriched nanodomains of 10 nm diameter with short characteristic times around 100 µs. The removal of cholesterol led to the free diffusion of SM, consistent with the dispersion of nanodomains. Our results are consistent with the existence of highly transient and fluctuating nanoscale assemblies enriched by cholesterol and sphingolipids in living cell membranes, also known as lipid rafts. Quantitative data on sphingolipids partitioning into lipid rafts is crucial to understand the spatiotemporal heterogeneous organization of transient molecular complexes on the membrane of living cells at the nanoscale. The proposed technique is fully biocompatible and thus provides various opportunities for biophysics and live cell research to reveal details that remain hidden in confocal diffraction-limited measurements.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Espectrometria de Fluorescência / Esfingomielinas / Membrana Celular / Colesterol / Microdomínios da Membrana / Etanolaminas Limite: Animals Idioma: En Revista: Nano Lett Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Espectrometria de Fluorescência / Esfingomielinas / Membrana Celular / Colesterol / Microdomínios da Membrana / Etanolaminas Limite: Animals Idioma: En Revista: Nano Lett Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Espanha
...