Your browser doesn't support javascript.
loading
Transcriptomic analysis reveals differentially expressed genes and a unique apoptosis pathway in channel catfish ovary cells after infection with the channel catfish virus.
Dawar, Farman Ullah; Hu, Xianqin; Zhao, Lijuan; Dong, Xingxing; Xiong, Yang; Zhou, Meng; Liang, Rishen; Sarath Babu, V; Li, Jun; Mei, Jie; Lin, Li.
Afiliação
  • Dawar FU; Department of Aquatic Animal Medicine, College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Guangzhou Key Laboratory of Aquatic Animal Disease
  • Hu X; Department of Aquatic Animal Medicine, College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; School of Animal Sciences and Nutritional Engineer
  • Zhao L; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
  • Dong X; Department of Aquatic Animal Medicine, College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
  • Xiong Y; Department of Aquatic Animal Medicine, College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
  • Zhou M; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
  • Liang R; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
  • Sarath Babu V; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
  • Li J; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI 49783, USA; Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China.
  • Mei J; Department of Aquatic Animal Medicine, College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. Electronic address: jmei@mail.hzau.edu.cn.
  • Lin L; Department of Aquatic Animal Medicine, College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Guangzhou Key Laboratory of Aquatic Animal Disease
Fish Shellfish Immunol ; 71: 58-68, 2017 Dec.
Article em En | MEDLINE | ID: mdl-28970047
The channel catfish virus (CCV) can cause lethal hemorrhagic infection in juvenile channel catfish, thereby resulting in a huge economic loss to the fish industry. The genome of the CCV has been fully sequenced, and its prevalence is well documented. However, less is known about the molecular mechanisms and pathogenesis of the CCV. Herein, the channel catfish ovary cells (CCO) were infected with CCV and their transcriptomic sketches were analyzed using an RNA sequencing technique. In total, 72,686,438 clean reads were obtained from 73,231,128 sequence reads, which were further grouped into 747,168 contigs. These contigs were assembled into 49,119 unigenes, of which 20,912 and 18,333 unigenes were found in Nr and SwissProt databases and matched 15,911 and 14,625 distinctive proteins, respectively. From these, 3641 differentially expressed genes (DEGs), comprising 260 up-regulated and 3381 down-regulated genes, were found compared with the control (non-infected) cells. For verification, 16 DEGs were analyzed using qRT-PCR. The analysis of the DEGs and their related cellular signaling pathways revealed a substantial number of DEGs that were involved in the apoptosis pathway induced by CCV infection. The apoptosis pathways were further elucidated using standard apoptosis assays. The results showed that CCV could induce extrinsic apoptosis pathway (instead of a mitochondrial intrinsic apoptosis pathway) in CCO cells. This study helps our understanding of the pathogenesis of CCV and contributes to the prevention of CCV infection in channel catfish.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ictaluridae / Expressão Gênica / Infecções por Herpesviridae / Proteínas de Peixes Tipo de estudo: Risk_factors_studies Limite: Animals Idioma: En Revista: Fish Shellfish Immunol Assunto da revista: BIOLOGIA / MEDICINA VETERINARIA Ano de publicação: 2017 Tipo de documento: Article País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ictaluridae / Expressão Gênica / Infecções por Herpesviridae / Proteínas de Peixes Tipo de estudo: Risk_factors_studies Limite: Animals Idioma: En Revista: Fish Shellfish Immunol Assunto da revista: BIOLOGIA / MEDICINA VETERINARIA Ano de publicação: 2017 Tipo de documento: Article País de publicação: Reino Unido