Your browser doesn't support javascript.
loading
Digging deep into Golgi phenotypic diversity with unsupervised machine learning.
Hussain, Shaista; Le Guezennec, Xavier; Yi, Wang; Dong, Huang; Chia, Joanne; Yiping, Ke; Khoon, Lee Kee; Bard, Frédéric.
Afiliação
  • Hussain S; Institute of High Performance Computing, Singapore 138673.
  • Le Guezennec X; Institute of Molecular and Cell Biology, Singapore 138673.
  • Yi W; Institute of High Performance Computing, Singapore 138673.
  • Dong H; Institute of High Performance Computing, Singapore 138673.
  • Chia J; Institute of Molecular and Cell Biology, Singapore 138673.
  • Yiping K; School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798.
  • Khoon LK; Institute of High Performance Computing, Singapore 138673.
  • Bard F; Institute of Molecular and Cell Biology, Singapore 138673 fbard@imcb.a-star.edu.sg.
Mol Biol Cell ; 28(25): 3686-3698, 2017 Dec 01.
Article em En | MEDLINE | ID: mdl-29021342
The synthesis of glycans and the sorting of proteins are critical functions of the Golgi apparatus and depend on its highly complex and compartmentalized architecture. High-content image analysis coupled to RNA interference screening offers opportunities to explore this organelle organization and the gene network underlying it. To date, image-based Golgi screens have based on a single parameter or supervised analysis with predefined Golgi structural classes. Here, we report the use of multiparametric data extracted from a single marker and a computational unsupervised analysis framework to explore Golgi phenotypic diversity more extensively. In contrast with the three visually definable phenotypes, our framework reproducibly identified 10 Golgi phenotypes. They were used to quantify and stratify phenotypic similarities among genetic perturbations. The derived phenotypic network partially overlaps previously reported protein-protein interactions as well as suggesting novel functional interactions. Our workflow suggests the existence of multiple stable Golgi organizational states and provides a proof of concept for the classification of drugs and genes using fine-grained phenotypic information.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aprendizado de Máquina não Supervisionado / Complexo de Golgi Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Mol Biol Cell Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2017 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aprendizado de Máquina não Supervisionado / Complexo de Golgi Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Mol Biol Cell Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2017 Tipo de documento: Article País de publicação: Estados Unidos