Your browser doesn't support javascript.
loading
A Queue-Based Monte Carlo Analysis to Support Decision Making for Implementation of an Emergency Department Fast Track.
Fitzgerald, Kristin; Pelletier, Lori; Reznek, Martin A.
Afiliação
  • Fitzgerald K; Operations Research and Financial Engineering, Princeton University, Princeton, NJ 08540, USA.
  • Pelletier L; Center for Innovation and Transformational Change, UMass Memorial Health Care, Worcester, MA 01655, USA.
  • Reznek MA; Operational Excellence, UMass Memorial Health Care, Worcester, MA 01655, USA.
J Healthc Eng ; 2017: 6536523, 2017.
Article em En | MEDLINE | ID: mdl-29065634
Emergency departments (EDs) are seeking ways to utilize existing resources more efficiently as they face rising numbers of patient visits. This study explored the impact on patient wait times and nursing resource demand from the addition of a fast track, or separate unit for low-acuity patients, in the ED using a queue-based Monte Carlo simulation in MATLAB. The model integrated principles of queueing theory and expanded the discrete event simulation to account for time-based arrival rates. Additionally, the ED occupancy and nursing resource demand were modeled and analyzed using the Emergency Severity Index (ESI) levels of patients, rather than the number of beds in the department. Simulation results indicated that the addition of a separate fast track with an additional nurse reduced overall median wait times by 35.8 ± 2.2 percent and reduced average nursing resource demand in the main ED during hours of operation. This novel modeling approach may be easily disseminated and informs hospital decision-makers of the impact of implementing a fast track or similar system on both patient wait times and acuity-based nursing resource demand.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tomada de Decisões Assistida por Computador / Método de Monte Carlo / Eficiência Organizacional / Serviço Hospitalar de Emergência Tipo de estudo: Health_economic_evaluation / Prognostic_studies País/Região como assunto: America do norte Idioma: En Revista: J Healthc Eng Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tomada de Decisões Assistida por Computador / Método de Monte Carlo / Eficiência Organizacional / Serviço Hospitalar de Emergência Tipo de estudo: Health_economic_evaluation / Prognostic_studies País/Região como assunto: America do norte Idioma: En Revista: J Healthc Eng Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido