Your browser doesn't support javascript.
loading
Nanoscale, conformal films of graphitic carbon nitride deposited at room temperature: a method for construction of heterojunction devices.
Ladva, Satyam A; Travis, William; Quesada-Cabrera, Raul; Rosillo-Lopez, Martin; Afandi, Abdulkareem; Li, Yaomin; Jackman, Richard B; Bear, Joseph C; Parkin, Ivan P; Blackman, Christopher; Salzmann, Christoph G; Palgrave, Robert G.
Afiliação
  • Ladva SA; Department of Chemistry, University College London, London, UK. r.palgrave@ucl.ac.uk.
  • Travis W; Department of Chemistry, University College London, London, UK. r.palgrave@ucl.ac.uk.
  • Quesada-Cabrera R; Department of Chemistry, University College London, London, UK. r.palgrave@ucl.ac.uk.
  • Rosillo-Lopez M; Department of Chemistry, University College London, London, UK. r.palgrave@ucl.ac.uk.
  • Afandi A; London Centre for Nanotechnology and the Department of Electronic and Electrical Engineering, University College London, London, UK.
  • Li Y; Department of Chemistry, University College London, London, UK. r.palgrave@ucl.ac.uk.
  • Jackman RB; London Centre for Nanotechnology and the Department of Electronic and Electrical Engineering, University College London, London, UK.
  • Bear JC; Department of Chemistry, University College London, London, UK. r.palgrave@ucl.ac.uk.
  • Parkin IP; Department of Chemistry, University College London, London, UK. r.palgrave@ucl.ac.uk.
  • Blackman C; Department of Chemistry, University College London, London, UK. r.palgrave@ucl.ac.uk.
  • Salzmann CG; Department of Chemistry, University College London, London, UK. r.palgrave@ucl.ac.uk.
  • Palgrave RG; Department of Chemistry, University College London, London, UK. r.palgrave@ucl.ac.uk.
Nanoscale ; 9(43): 16586-16590, 2017 Nov 09.
Article em En | MEDLINE | ID: mdl-29072750
ABSTRACT
Graphitic carbon nitrides (GCNs) represent a family of 2D materials composed of carbon and nitrogen with variable amounts of hydrogen, used in a wide variety of applications. We report a method of room temperature thin film deposition which allows ordered GCN layers to be deposited on a very wide variety of substrates, including conductive glass, flexible plastics, nanoparticles and nano-structured surfaces, where they form a highly conformal coating on the nanoscale. Film thicknesses of below 20 nm are achievable. In this way we construct functional nanoscale heterojunctions between TiO2 nanoparticles and GCN, capable of producing H2 photocatalytically under visible light irradiation. The films are hydrogen rich, have a band gap around 1.7 eV, display transmission electron microscopy lattice fringes as well as X-ray diffraction peaks despite being deposited at room temperature, and show characteristic Raman and IR bands. We use cluster etching to reveal the chemical environments of C and N in GCN using X-ray photoelectron spectroscopy. We elucidate the mechanism of this deposition, which operates via sequential surface adsorption and reaction analogous to atomic layer deposition. The mechanism may have implications for current models of carbon nitride formation.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Nanoscale Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Nanoscale Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Reino Unido