Your browser doesn't support javascript.
loading
Increased transcriptional and metabolic capacity for lipid metabolism in the peripheral zone of the prostate may underpin its increased susceptibility to cancer.
Al Kadhi, Omar; Traka, Maria H; Melchini, Antonietta; Troncoso-Rey, Perla; Jurkowski, Wiktor; Defernez, Marianne; Pachori, Purnima; Mills, Robert D; Ball, Richard Y; Mithen, Richard F.
Afiliação
  • Al Kadhi O; Food and Health Programme, Quadram Institute Bioscience, Norwich, UK.
  • Traka MH; Department of Urology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK.
  • Melchini A; Food and Health Programme, Quadram Institute Bioscience, Norwich, UK.
  • Troncoso-Rey P; Food and Health Programme, Quadram Institute Bioscience, Norwich, UK.
  • Jurkowski W; Integrative Genomics, Earlham Institute, Norwich, UK.
  • Defernez M; Integrative Genomics, Earlham Institute, Norwich, UK.
  • Pachori P; Analytical Sciences Unit, Quadram Institute Bioscience, Norwich, UK.
  • Mills RD; Platforms and Pipelines Bioinformatics, Earlham Institute, Norwich, UK.
  • Ball RY; Department of Urology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK.
  • Mithen RF; Norfolk and Waveney Cellular Pathology Service, Norfolk and Norwich University Hospital, Norwich, UK.
Oncotarget ; 8(49): 84902-84916, 2017 Oct 17.
Article em En | MEDLINE | ID: mdl-29156692
The human prostate gland comprises three distinct anatomical glandular zones, namely the peripheral, central and transitional zones. Although prostate cancer can arise throughout the prostate, it is more frequent in the peripheral zone. In contrast, hyperplasia occurs most frequently in the transitional zone. In this paper, we test the hypothesis that peripheral and transitional zones have distinct metabolic adaptations that may underlie their different inherent predispositions to cancer and hyperplasia. In order to do this, we undertook RNA sequencing and high-throughput metabolic analyses of non-cancerous tissue from the peripheral and transitional zones of patients undergoing prostatectomy. Integrated analysis of RNAseq and metabolomic data revealed that transcription of genes involved in lipid biosynthesis is higher in the peripheral zone, which was mirrored by an increase in fatty acid metabolites, such as lysolipids. The peripheral zone also exhibited increased fatty acid catabolic activity and contained higher level of neurotransmitters. Such increased capacity for de novo lipogenesis and fatty acid oxidation, which is characteristic of prostate cancer, can potentially provide a permissive growth environment within the peripheral zone for cancer growth and also transmit a metabolic growth advantage to newly emerging clones themselves. This lipo-rich priming may explain the observed susceptibility of the peripheral zone to oncogenesis.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Oncotarget Ano de publicação: 2017 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Oncotarget Ano de publicação: 2017 Tipo de documento: Article País de publicação: Estados Unidos