Your browser doesn't support javascript.
loading
Diacylglycerol triggers Rim101 pathway-dependent necrosis in yeast: a model for lipotoxicity.
Rockenfeller, Patrick; Smolnig, Martin; Diessl, Jutta; Bashir, Mina; Schmiedhofer, Vera; Knittelfelder, Oskar; Ring, Julia; Franz, Joakim; Foessl, Ines; Khan, Muhammad J; Rost, René; Graier, Wolfgang F; Kroemer, Guido; Zimmermann, Andreas; Carmona-Gutierrez, Didac; Eisenberg, Tobias; Büttner, Sabrina; Sigrist, Stephan J; Kühnlein, Ronald P; Kohlwein, Sepp D; Gourlay, Campbell W; Madeo, Frank.
Afiliação
  • Rockenfeller P; Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria. P.Rockenfeller@kent.ac.uk.
  • Smolnig M; Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK. P.Rockenfeller@kent.ac.uk.
  • Diessl J; Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria.
  • Bashir M; Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria.
  • Schmiedhofer V; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm, 106 91, Sweden.
  • Knittelfelder O; Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria.
  • Ring J; Division of Endocrinology and Diabetology, Medical University of Graz, Graz, 8010, Austria.
  • Franz J; Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria.
  • Foessl I; Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria.
  • Khan MJ; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany.
  • Rost R; Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria.
  • Graier WF; Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria.
  • Kroemer G; Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, 8010, Austria.
  • Zimmermann A; Division of Endocrinology and Diabetology, Medical University of Graz, Graz, 8010, Austria.
  • Carmona-Gutierrez D; Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, 8010, Austria.
  • Eisenberg T; Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, 44000, Pakistan.
  • Büttner S; Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, 8010, Austria.
  • Sigrist SJ; Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, 8010, Austria.
  • Kühnlein RP; INSERM U848, Villejuif, 94805, France.
  • Kohlwein SD; Metabolomics Platform, Institut Gustave Roussy, Paris, 94805, France.
  • Gourlay CW; Centre de Recherche des Cordeliers, Paris, 75006, France.
  • Madeo F; Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, 75015, France.
Cell Death Differ ; 25(4): 767-783, 2018 03.
Article em En | MEDLINE | ID: mdl-29230001
ABSTRACT
The loss of lipid homeostasis can lead to lipid overload and is associated with a variety of disease states. However, little is known as to how the disruption of lipid regulation or lipid overload affects cell survival. In this study we investigated how excess diacylglycerol (DG), a cardinal metabolite suspected to mediate lipotoxicity, compromises the survival of yeast cells. We reveal that increased DG achieved by either genetic manipulation or pharmacological administration of 1,2-dioctanoyl-sn-glycerol (DOG) triggers necrotic cell death. The toxic effects of DG are linked to glucose metabolism and require a functional Rim101 signaling cascade involving the Rim21-dependent sensing complex and the activation of a calpain-like protease. The Rim101 cascade is an established pathway that triggers a transcriptional response to alkaline or lipid stress. We propose that the Rim101 pathway senses DG-induced lipid perturbation and conducts a signaling response that either facilitates cellular adaptation or triggers lipotoxic cell death. Using established models of lipotoxicity, i.e., high-fat diet in Drosophila and palmitic acid administration in cultured human endothelial cells, we present evidence that the core mechanism underlying this calpain-dependent lipotoxic cell death pathway is phylogenetically conserved.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Repressoras / Saccharomyces cerevisiae / Transdução de Sinais / Proteínas de Saccharomyces cerevisiae / Diglicerídeos / Modelos Biológicos Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Cell Death Differ Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Áustria

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Repressoras / Saccharomyces cerevisiae / Transdução de Sinais / Proteínas de Saccharomyces cerevisiae / Diglicerídeos / Modelos Biológicos Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Cell Death Differ Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Áustria