Your browser doesn't support javascript.
loading
Light-harvesting chlorophyll protein (LHCII) drives electron transfer in semiconductor nanocrystals.
Werwie, Mara; Dworak, Lars; Bottin, Anne; Mayer, Lisa; Basché, Thomas; Wachtveitl, Josef; Paulsen, Harald.
Afiliação
  • Werwie M; Institut für Molekulare Physiologie, Johannes-Gutenberg-Universität Mainz, Johannes-von-Müller-Weg 6, 55099 Mainz, Germany.
  • Dworak L; Institut für Physikalische und Theoretische Chemie, Max-von-Laue-Straße 7, Gebäude N120/224, 60438 Frankfurt am Main, Germany.
  • Bottin A; Institut für Physikalische Chemie, Johannes-Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
  • Mayer L; Institut für Molekulare Physiologie, Johannes-Gutenberg-Universität Mainz, Johannes-von-Müller-Weg 6, 55099 Mainz, Germany.
  • Basché T; Institut für Physikalische Chemie, Johannes-Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
  • Wachtveitl J; Institut für Physikalische und Theoretische Chemie, Max-von-Laue-Straße 7, Gebäude N120/224, 60438 Frankfurt am Main, Germany.
  • Paulsen H; Institut für Molekulare Physiologie, Johannes-Gutenberg-Universität Mainz, Johannes-von-Müller-Weg 6, 55099 Mainz, Germany. Electronic address: paulsen@uni-mainz.de.
Biochim Biophys Acta Bioenerg ; 1859(3): 174-181, 2018 Mar.
Article em En | MEDLINE | ID: mdl-29247606
Type-II quantum dots (QDs) are capable of light-driven charge separation between their core and the shell structures; however, their light absorption is limited in the longer-wavelength range. Biological light-harvesting complex II (LHCII) efficiently absorbs in the blue and red spectral domains. Therefore, hybrid complexes of these two structures may be promising candidates for photovoltaic applications. Previous measurements had shown that LHCII bound to QD can transfer its excitation energy to the latter, as indicated by the fluorescence emissions of LHCII and QD being quenched and sensitized, respectively. In the presence of methyl viologen (MV), both fluorescence emissions are quenched, indicating an additional electron transfer process from QDs to MV. Transient absorption spectroscopy confirmed this notion and showed that electron transfer from QDs to MV is much faster than fluorescence energy transfer between LHCII and QD. The action spectrum of MV reduction by LHCII-QD complexes reflected the LHCII absorption spectrum, showing that light absorbed by LHCII and transferred to QDs increased the efficiency of MV reduction by QDs. Under continuous illumination, at least 28 turnovers were observed for the MV reduction. Presumably, the holes in QD cores were filled by a reducing agent in the reaction solution or by the dihydrolipoic-acid coating of the QDs. The LHCII-QD construct can be viewed as a simple model of a photosystem with the QD component acting as reaction center.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Semicondutores / Complexos de Proteínas Captadores de Luz / Complexo de Proteína do Fotossistema II / Nanopartículas Idioma: En Revista: Biochim Biophys Acta Bioenerg Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Alemanha País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Semicondutores / Complexos de Proteínas Captadores de Luz / Complexo de Proteína do Fotossistema II / Nanopartículas Idioma: En Revista: Biochim Biophys Acta Bioenerg Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Alemanha País de publicação: Holanda