Your browser doesn't support javascript.
loading
Localized Three-Dimensional Functionalization of Bionanoreceptors on High-Density Micropillar Arrays via Electrowetting.
Chu, Sangwook; Winkler, Thomas E; Brown, Adam D; Culver, James N; Ghodssi, Reza.
Afiliação
  • Chu S; Department of Electrical and Computer Engineering, ‡Institute for Systems Research, §Fischell Department of Bioengineering, ∥Institute for Bioscience and Biotechnology Research, and ⊥Department of Plant Science and Landscape Architecture, University of Maryland , College Park, Maryland 20742, Un
  • Winkler TE; Department of Electrical and Computer Engineering, ‡Institute for Systems Research, §Fischell Department of Bioengineering, ∥Institute for Bioscience and Biotechnology Research, and ⊥Department of Plant Science and Landscape Architecture, University of Maryland , College Park, Maryland 20742, Un
  • Brown AD; Department of Electrical and Computer Engineering, ‡Institute for Systems Research, §Fischell Department of Bioengineering, ∥Institute for Bioscience and Biotechnology Research, and ⊥Department of Plant Science and Landscape Architecture, University of Maryland , College Park, Maryland 20742, Un
  • Culver JN; Department of Electrical and Computer Engineering, ‡Institute for Systems Research, §Fischell Department of Bioengineering, ∥Institute for Bioscience and Biotechnology Research, and ⊥Department of Plant Science and Landscape Architecture, University of Maryland , College Park, Maryland 20742, Un
  • Ghodssi R; Department of Electrical and Computer Engineering, ‡Institute for Systems Research, §Fischell Department of Bioengineering, ∥Institute for Bioscience and Biotechnology Research, and ⊥Department of Plant Science and Landscape Architecture, University of Maryland , College Park, Maryland 20742, Un
Langmuir ; 34(4): 1725-1732, 2018 01 30.
Article em En | MEDLINE | ID: mdl-29301087
ABSTRACT
In this work, we introduce an electrowetting-assisted 3-D biofabrication process allowing both complete and localized functionalization of bionanoreceptors onto densely arranged 3-D microstructures. The integration of biomaterials with 3-D microdevice components offers exciting opportunities for communities developing miniature bioelectronics with enhanced performance and advanced modes of operation. However, most biological materials are stable only in properly conditioned aqueous solutions, thus the water-repellent properties exhibited by densely arranged micro/nanostructures (widely known as the Cassie-Baxter state) represent a significant challenge to biomaterial integration. Here, we first investigate such potential limitations using cysteine-modified tobacco mosaic virus (TMV1cys) as a model bionanoreceptor and a set of Au-coated Si-micropillar arrays (µPAs) of varying densities. Furthermore, we introduce a novel biofabrication system adopting electrowetting principles for the controlled localization of TMV1cys bionanoreptors on densely arranged µPAs. Contact angle analysis and SEM characterizations provide clear evidence to indicate structural hydrophobicity as a key limiting factor for 3-D biofunctionalization and for electrowetting as an effective method to overcome this limitation. The successful 3-D biofabrication is confirmed using SEM and fluorescence microscopy that show spatially controlled and uniform assemblies of TMV1cys on µPAs. The increased density of TMV1cys per device footprint produces a 7-fold increase in fluorescence intensity attributed to the µPAs when compared to similar assemblies on planar substrates. Combined, this work demonstrates the potential of electrowetting as a unique enabling solution for the controlled and efficient biofabrication of 3-D-patterned micro/nanodomains.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Langmuir Assunto da revista: QUIMICA Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Langmuir Assunto da revista: QUIMICA Ano de publicação: 2018 Tipo de documento: Article